人工智能在动物实验中的应用:综述

Use of artificial intelligence in animal experimentation: A review.

作者信息

Diogo Gonçalves Sara, Rodrigues Mariana, Avidos Mariana, Morais Ana Beatriz, Caramelo Ana

机构信息

Clinical Academic Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, Vila Real 5000-801, Portugal.

Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real 5000-801, Portugal.

出版信息

Toxicol Lett. 2025 Aug;411:89-100. doi: 10.1016/j.toxlet.2025.07.1417. Epub 2025 Jul 24.

Abstract

Animal experimentation has historically supported biomedical and toxicological research; however, its limitations in accurately predicting human responses, combined with ethical and regulatory pressures, have driven the development of alternative methods. Advances in artificial intelligence (AI) offer a promising opportunity to not only reduce animal use but also significantly enhance the reliability, efficiency, and human relevance of toxicity and safety assessments. This review examines AI-driven approaches - including in silico modelling, machine learning, and computational toxicology - used to predict toxicity, assess drug safety, and classify chemical hazards, with a focus on their contribution to the 3Rs principle and regulatory innovation. AI models, including deep learning algorithms, quantitative structure-activity relationship models, and integrated decision strategies, have demonstrated improved accuracy in predicting endpoints such as skin sensitization, carcinogenicity, and endocrine disruption. Moreover, hybrid methods combining in vitro data with AI-powered tools provide a scalable and reproducible framework for safety evaluation. While regulatory validation remains a challenge, the convergence of AI and toxicology holds immense potential to advance both predictive science and animal-free research. AI represents not only an ethical alternative but also a scientifically superior path toward safer and more human-relevant toxicity testing.

摘要

从历史上看,动物实验一直为生物医学和毒理学研究提供支持;然而,其在准确预测人类反应方面的局限性,再加上伦理和监管压力,推动了替代方法的发展。人工智能(AI)的进步不仅为减少动物使用提供了一个充满希望的机会,而且还能显著提高毒性和安全性评估的可靠性、效率以及与人类的相关性。本综述探讨了用于预测毒性、评估药物安全性和化学危害分类的人工智能驱动方法,包括计算机模拟建模、机器学习和计算毒理学,重点关注它们对3R原则和监管创新的贡献。人工智能模型,包括深度学习算法、定量构效关系模型和综合决策策略,在预测皮肤致敏、致癌性和内分泌干扰等终点方面已显示出更高的准确性。此外,将体外数据与人工智能驱动工具相结合的混合方法为安全评估提供了一个可扩展且可重复的框架。虽然监管验证仍然是一个挑战,但人工智能与毒理学的融合在推进预测科学和无动物研究方面具有巨大潜力。人工智能不仅代表了一种符合伦理的替代方法,而且是通往更安全、更符合人类情况的毒性测试的科学上更优越的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索