文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习在预测毒理学中的作用:当前趋势与未来展望综述。

The role of machine learning in predictive toxicology: A review of current trends and future perspectives.

作者信息

Ajisafe Olawale M, Adekunle Yemi A, Egbon Eghosasere, Ogbonna Covenant Ebubechi, Olawade David B

机构信息

Department of Comparative Biomedical Science, College of Veterinary Medicine, Mississippi State University, Starkville, United States.

Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria.

出版信息

Life Sci. 2025 Jun 24;378:123821. doi: 10.1016/j.lfs.2025.123821.


DOI:10.1016/j.lfs.2025.123821
PMID:40571275
Abstract

Adverse drug reactions (ADRs) are a major challenge in drug development, contributing to high attrition rates and significant financial losses. Due to species differences and limited scalability, traditional toxicity testing methods, such as in vitro assays and animal studies, often fail to predict human-specific toxicities accurately. The emergence of artificial intelligence (AI) and machine learning (ML) has introduced transformative approaches to predictive toxicology, leveraging large-scale datasets such as omics profiles, chemical properties, and electronic health records (EHRs). These AI-powered models provide early and accurate identification of toxicity risks, reducing reliance on animal testing and improving the efficiency of drug discovery. This review explores the role of AI models in predicting ADRs, emphasizing their ability to integrate diverse datasets and uncover complex toxicity mechanisms. Validation techniques, including cross-validation, external validation, and benchmarking against traditional methods, are discussed to ensure model robustness and generalizability. Furthermore, the ethical implications of AI, its alignment with the 3Rs principle (Replacement, Reduction, and Refinement), and its potential to address regulatory challenges are highlighted. By expediting the identification of safe drug candidates and minimizing late-stage failures, AI models significantly reduce costs and development timelines. However, challenges related to data quality, interpretability, and regulatory integration persist. Addressing these issues will enable AI to fully revolutionize predictive toxicology, ensuring safer and more effective drug development processes.

摘要

药物不良反应(ADR)是药物研发中的一项重大挑战,导致高淘汰率和巨大的经济损失。由于物种差异和可扩展性有限,传统的毒性测试方法,如体外试验和动物研究,往往无法准确预测人类特有的毒性。人工智能(AI)和机器学习(ML)的出现为预测毒理学带来了变革性方法,利用了诸如组学图谱、化学性质和电子健康记录(EHR)等大规模数据集。这些由人工智能驱动的模型能够早期准确识别毒性风险,减少对动物试验的依赖,提高药物发现的效率。本综述探讨了人工智能模型在预测药物不良反应中的作用,强调了它们整合不同数据集和揭示复杂毒性机制的能力。讨论了验证技术,包括交叉验证、外部验证以及与传统方法的基准测试,以确保模型的稳健性和通用性。此外,还强调了人工智能的伦理意义、其与3R原则(替代、减少和优化)的一致性以及其应对监管挑战的潜力。通过加快安全候选药物的识别并最大限度地减少后期失败,人工智能模型显著降低了成本和开发时间。然而,与数据质量、可解释性和监管整合相关的挑战仍然存在。解决这些问题将使人工智能能够全面革新预测毒理学,确保更安全、更有效的药物开发过程。

相似文献

[1]
The role of machine learning in predictive toxicology: A review of current trends and future perspectives.

Life Sci. 2025-6-24

[2]
The dawn of a new era: can machine learning and large language models reshape QSP modeling?

J Pharmacokinet Pharmacodyn. 2025-6-16

[3]
Leveraging machine learning models in evaluating ADMET properties for drug discovery and development.

ADMET DMPK. 2025-6-7

[4]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[5]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[6]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[7]
Pharmacovigilance in the Era of Artificial Intelligence: Advancements, Challenges, and Considerations.

Cureus. 2025-6-29

[8]
Advances in artificial intelligence for diabetes prediction: insights from a systematic literature review.

Artif Intell Med. 2025-6

[9]
The Use of AI for Phenotype-Genotype Mapping.

Methods Mol Biol. 2025

[10]
Recent Development, Applications, and Patents of Artificial Intelligence in Drug Design and Development.

Curr Drug Discov Technol. 2025-2-10

引用本文的文献

[1]
Xenobiotic Toxicants and Particulate Matter: Effects, Mechanisms, Impacts on Human Health, and Mitigation Strategies.

J Xenobiot. 2025-8-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索