Zhang Weihang, Guan Aomei, Qi Weixiao, Mu Xiaoying, Hu Chengzhi, Qu Jiuhui
Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing, 100084, China.
Environ Res. 2025 Jul 23;285(Pt 2):122426. doi: 10.1016/j.envres.2025.122426.
Antibiotic residues in the tailwater of wastewater treatment plants (WWTPs) threaten nitrogen removal in constructed wetlands (CWs), yet the long-term impacts of fluctuating sulfamethoxazole (SMX) and its metabolite N-acetylsulfamethoxazole (N-SMX) remain unclear. Here, the dual effects of dynamic recovery in microbial nitrogen-removal functions and irreversible accumulation of antibiotic resistance genes (ARGs) under gradient SMX + N-SMX exposure (10-1000 μg L with 30-day stepwise increments) in lab-scale CWs were systematically revealed. At ≤ 100 μg L, denitrification and anammox rates could recover to baseline levels, whereas 1 mg L exposure triggered a short-term surge and then cumulative inhibition of nitrogen reduction (e.g., denitrification rates was 34.7 % lower than the controls even after the SMX + N-SMX concentration reduction). Notably, sulfonamide resistance genes (sul1/sul2) increased steadily over 180 days despite the decline in SMX + N-SMX exposure (from 1 mg L to 10 μg L from day 120 to day 180), probably driven by horizontal gene transfer. Microbial analysis identified Burkholderia and Anaerolineales as dual-functional taxa linking nitrogen metabolism with ARGs propagation. Furthermore, sustained exposure suppressed the expression of denitrification genes (narG/nirK) of Methylotenera, despite its role in degrading SMX/N-SMX. These findings highlight a critical threshold: exposures <100 μg L allow the functional recovery of nitrogen reduction, but ≥1 mg L induces irreversible ARGs enrichment and disrupts microbial nitrogen cycling. This study provides mechanistic insights into the ecological risks of antibiotic fluctuations, advocating stricter control of high-concentration SMX/N-SMX in WWTP tailwater to mitigate the dissemination of resistance genes.
污水处理厂(WWTPs)尾水中的抗生素残留威胁着人工湿地(CWs)的脱氮功能,然而,磺胺甲恶唑(SMX)及其代谢产物N - 乙酰磺胺甲恶唑(N - SMX)波动的长期影响仍不清楚。在此,系统地揭示了在实验室规模的人工湿地中,梯度SMX + N - SMX暴露(10 - 1000μg/L,30天逐步递增)下微生物脱氮功能的动态恢复和抗生素抗性基因(ARGs)不可逆积累的双重影响。在≤100μg/L时,反硝化和厌氧氨氧化速率可恢复到基线水平,而1mg/L的暴露引发短期激增,随后对氮还原产生累积抑制(例如,即使在SMX + N - SMX浓度降低后,反硝化速率仍比对照低34.7%)。值得注意的是,尽管SMX + N - SMX暴露量下降(从第120天到第180天从1mg/L降至10μg/L),磺胺抗性基因(sul1/sul2)在180天内仍稳步增加,这可能是由水平基因转移驱动的。微生物分析确定伯克霍尔德氏菌属和厌氧绳菌目为连接氮代谢与ARGs传播的双功能分类群。此外,持续暴露抑制了甲基弯曲菌属反硝化基因(narG/nirK)的表达,尽管它在降解SMX/N - SMX中发挥作用。这些发现突出了一个关键阈值:暴露量<100μg/L允许氮还原功能恢复,但≥1mg/L会导致ARGs不可逆富集并破坏微生物氮循环。本研究为抗生素波动的生态风险提供了机制见解,主张更严格地控制污水处理厂尾水中高浓度的SMX/N - SMX,以减轻抗性基因的传播。