Fang Chenpeng, Liu Huaqing, Chen Xinhan, Lu Hui, Ren Chongyang, Hu Zhen, Wang Yifan, Zhang Jian
College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
Water Res. 2025 Sep 15;284:123939. doi: 10.1016/j.watres.2025.123939. Epub 2025 May 31.
The interplay between sulfur-driven denitrification and antibiotic resistance genes (ARGs) proliferation remains unresolved in constructed wetlands (CWs), where sulfide accumulation and reactive oxygen species generation paradoxically enhance nitrogen removal while compromising microbial integrity. To resolve this conflict, this study engineered a FeS@S° composite filler that synergized thioredoxin (Trx)-mediated sulfur cycling and biogenic sulfur (bio-S) encapsulation. Upregulation of trxA/B genes (2.3-fold increase) enabled Trx to convert toxic sulfide into adhesive bio-S, exhibiting higher microbial adhesion that shielded functional denitrifiers like Thiomonas (84.03 % viability under SMX stress). Concurrently, sulfur vacancies (SVs) at FeS {210} crystal facets generated hydroxyl radicals (•OH) and singlet oxygen (¹O₂) via vacancy-activated pathways, selectively degrading about 73.00 % of extracellular polymeric substance (EPS)-bound ARGs while suppressing horizontal gene transfer (tolC downregulation). The 6:4 FeS@S system achieved 68.66 % total nitrogen removal and 50.17 % sulfamethoxazole degradation, outperforming conventional substrates by 28.00-39.00 %, alongside a 61.24-67.31 % reduction in ARG abundance. A self-sustaining sulfur cycle recycled about 89.00 % of sulfides into bio-S or FeS, minimizing HS emissions (0.045 mg·m·h) and maintaining electron flux. By bridging Trx-driven redox homeostasis and bio-S's physical protection, this work redefines CWs as robust systems capable of simultaneous nitrogen retention, antibiotic degradation, and ARGs suppression, establishing a transformative paradigm for sustainable wastewater treatment.
在人工湿地(CWs)中,硫驱动的反硝化作用与抗生素抗性基因(ARGs)增殖之间的相互作用仍未得到解决。在人工湿地中,硫化物积累和活性氧生成在矛盾中增强了氮去除效果,但同时损害了微生物完整性。为了解决这一冲突,本研究设计了一种FeS@S°复合填料,该填料协同硫氧还蛋白(Trx)介导的硫循环和生物源硫(bio-S)包封。trxA/B基因的上调(增加2.3倍)使Trx能够将有毒硫化物转化为粘性bio-S,表现出更高的微生物粘附性,从而保护了诸如硫单胞菌等功能性反硝化菌(在磺胺甲恶唑胁迫下存活率为84.03%)。同时,FeS{210}晶面的硫空位(SVs)通过空位激活途径产生羟基自由基(•OH)和单线态氧(¹O₂),选择性地降解约73.00%的细胞外聚合物(EPS)结合的ARGs,同时抑制水平基因转移(tolC下调)。6:4的FeS@S系统实现了68.66%的总氮去除率和50.17%的磺胺甲恶唑降解率,比传统基质高出28.00-39.00%,同时ARG丰度降低了61.24-67.31%。一个自我维持的硫循环将约89.00%的硫化物再循环为bio-S或FeS,将HS排放量降至最低(0.045 mg·m·h)并维持电子通量。通过桥接Trx驱动的氧化还原稳态和bio-S的物理保护作用,这项工作将人工湿地重新定义为能够同时实现氮保留、抗生素降解和ARGs抑制的强大系统,为可持续废水处理建立了一个变革性范例。