文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多组学和人工智能驱动的女性恶性肿瘤表观遗传治疗药物重新定位

Multi-omics based and AI-driven drug repositioning for epigenetic therapy in female malignancies.

作者信息

Salvati Annamaria, Melone Viola, Giordano Alessandro, Lamberti Jessica, Palumbo Domenico, Palo Luigi, Rea Dilia, Memoli Domenico, Simonis Vittoria, Alexandrova Elena, Silvestro Francesco, Rizzo Francesca, Weisz Alessandro, Tarallo Roberta, Nassa Giovanni

机构信息

Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, Baronissi, 84081, SA, Italy.

Genome Research Center for Health - CRGS, Baronissi, SA, 84081, Italy.

出版信息

J Transl Med. 2025 Jul 25;23(1):837. doi: 10.1186/s12967-025-06856-x.


DOI:10.1186/s12967-025-06856-x
PMID:40713639
Abstract

Histone post-translational modifications (PTMs) have long been recognized as critical regulators of chromatin dynamics and gene expression, with aberrations in these processes driving tumorigenesis, immune escape, metastasis, and therapy resistance. While multi-omics technologies are generating ever more detailed maps of the histone landscape, translating these insights into clinical practice remains challenging. The ongoing convergence of high-throughput omics technologies and Artificial Intelligence (AI) is revolutionizing drug repositioning strategies, offering new precision tools to identify histone-targeted therapies for solid tumors. In this review, we explore how AI-driven multi-omics integration is currently reshaping therapeutic opportunities by uncovering novel drug-target-patient associations with unprecedented accuracy. Special focus is given to gynecologic and breast cancers, where chromatin remodeling dysregulation is particularly widespread, conventional therapeutic approaches have demonstrated substantial limitations and drug resistance represents a major clinical obstacle. These aggressive and lethal cancers exemplify areas where AI-powered repurposing of epi-drugs is making tangible clinical advances, enhancing tumor sensitivity to treatments like immunotherapy, but also offering new avenues to overcome challenging phenomena such as drug resistance and cancer relapse. We critically discuss these challenges and the effectiveness of a combination strategy approaches based on AI-driven patient stratification and biomarker-guided therapy optimization to maximize clinical benefits. In an era where precision oncology demands both specific drugs and the application of smarter strategies, the integration of AI, multi-omics, and targeting of chromatin remodelers may herald a transformative shift in the management of solid tumors, bridging the gap between biological insights and therapeutic innovation.

摘要

长期以来,组蛋白翻译后修饰(PTMs)一直被认为是染色质动力学和基因表达的关键调节因子,这些过程中的异常会驱动肿瘤发生、免疫逃逸、转移和治疗耐药性。虽然多组学技术正在生成越来越详细的组蛋白图谱,但将这些见解转化为临床实践仍然具有挑战性。高通量组学技术与人工智能(AI)的不断融合正在彻底改变药物重新定位策略,提供新的精准工具来识别针对实体瘤的组蛋白靶向疗法。在这篇综述中,我们探讨了人工智能驱动的多组学整合目前如何通过以前所未有的准确性揭示新的药物-靶点-患者关联来重塑治疗机会。特别关注妇科和乳腺癌,其中染色质重塑失调尤为普遍,传统治疗方法已显示出很大局限性,而耐药性是一个主要临床障碍。这些侵袭性和致命性癌症例证了人工智能驱动的表观遗传药物重新定位正在取得切实临床进展的领域,增强了肿瘤对免疫疗法等治疗的敏感性,同时也提供了新途径来克服耐药性和癌症复发等具有挑战性的现象。我们批判性地讨论了这些挑战以及基于人工智能驱动的患者分层和生物标志物引导的治疗优化的联合策略方法的有效性,以最大化临床益处。在精准肿瘤学需要特定药物和更智能策略应用的时代,人工智能、多组学与染色质重塑因子靶向的整合可能预示着实体瘤管理的变革性转变,弥合生物学见解与治疗创新之间的差距。

相似文献

[1]
Multi-omics based and AI-driven drug repositioning for epigenetic therapy in female malignancies.

J Transl Med. 2025-7-25

[2]
Artificial Intelligence in cancer epigenomics: a review on advances in pan-cancer detection and precision medicine.

Epigenetics Chromatin. 2025-6-14

[3]
Targeting epigenetic regulators as a promising avenue to overcome cancer therapy resistance.

Signal Transduct Target Ther. 2025-7-18

[4]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[5]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[6]
Short-Term Memory Impairment

2025-1

[7]
AML diagnostics in the 21st century: Use of AI.

Semin Hematol. 2025-6-16

[8]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[9]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[10]
Systemic therapies for preventing or treating aromatase inhibitor-induced musculoskeletal symptoms in early breast cancer.

Cochrane Database Syst Rev. 2022-1-10

本文引用的文献

[1]
AI-Driven Drug Discovery: A Comprehensive Review.

ACS Omega. 2025-6-6

[2]
3D genome folding in epigenetic regulation and cellular memory.

Trends Cell Biol. 2025-4-10

[3]
Novel strategies in breast cancer management: From treatment to long-term remission.

Crit Rev Oncol Hematol. 2025-7

[4]
Artificial intelligence-driven translational medicine: a machine learning framework for predicting disease outcomes and optimizing patient-centric care.

J Transl Med. 2025-3-10

[5]
T-cell immune checkpoint inhibition plus hypomethylation for locally advanced HER2-negative breast cancer: a phase 2 neoadjuvant window trial of decitabine and pembrolizumab followed by standard neoadjuvant chemotherapy.

J Immunother Cancer. 2025-2-27

[6]
Epigenetic drugs in cancer therapy.

Cancer Metastasis Rev. 2025-2-26

[7]
Learning and actioning general principles of cancer cell drug sensitivity.

Nat Commun. 2025-2-15

[8]
Targeted intervention of tumor microenvironment with HDAC inhibitors and their combination therapy strategies.

Eur J Med Res. 2025-2-4

[9]
Improving drug repositioning with negative data labeling using large language models.

J Cheminform. 2025-2-4

[10]
Personalized prediction of anticancer potential of non-oncology drugs through learning from genome derived molecular pathways.

NPJ Precis Oncol. 2025-2-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索