Ferreira Fábio J N, Carneiro Agnaldo S
Universidade Federal do Pará, R. Augusto Corrêa, 01 - Guamá, Belém, Pará 66075-110, Brazil.
ACS Omega. 2025 Jun 6;10(23):23889-23903. doi: 10.1021/acsomega.5c00549. eCollection 2025 Jun 17.
Artificial intelligence (AI) and machine learning (ML) offer transformative potential to address the persistent challenges of traditional drug discovery, characterized by high costs, lengthy timelines, and low success rates. This comprehensive review critically analyzes recent advancements (2019-2024) in AI/ML methodologies across the entire drug discovery pipeline, from target identification to clinical development. We examine diverse AI techniques, including deep learning, graph neural networks, and transformers, focusing on their application in key areas such as target identification, lead discovery, hit optimization, and preclinical safety assessment. Our in-depth comparative analysis highlights the advantages, limitations, and practical challenges associated with different AI approaches, emphasizing critical factors for successful implementation such as data quality, model validation, and ethical considerations. The review synthesizes current applications, identifies persistent gapsparticularly in data accessibility, interpretability, and clinical translationand proposes future directions to unlock the full potential of AI in creating safer, more effective, and accessible medicines. By emphasizing transparent methodologies, robust validation, and ethical frameworks, this review aims to guide the responsible and impactful integration of AI into pharmaceutical research and development.
人工智能(AI)和机器学习(ML)为应对传统药物研发中持续存在的挑战提供了变革性潜力,这些挑战的特点是成本高、时间长和成功率低。这篇综述批判性地分析了2019年至2024年期间人工智能/机器学习方法在整个药物研发流程(从靶点识别到临床开发)中的最新进展。我们研究了多种人工智能技术,包括深度学习、图神经网络和变换器,重点关注它们在靶点识别、先导化合物发现、命中优化和临床前安全性评估等关键领域的应用。我们的深入比较分析突出了不同人工智能方法的优势、局限性和实际挑战,强调了成功实施的关键因素,如数据质量、模型验证和伦理考量。该综述总结了当前的应用,识别了持续存在的差距,特别是在数据可及性、可解释性和临床转化方面,并提出了未来的方向,以释放人工智能在创造更安全、更有效和更易获取药物方面的全部潜力。通过强调透明的方法、强有力的验证和伦理框架,本综述旨在指导将人工智能负责任且有影响力地整合到药物研发中。