Qian Fangren, Cao Dengfeng, Chen Shuangming, Yuan Yalong, Chen Kai, Chimtali Peter Joseph, Liu Hengjie, Jiang Wei, Sheng Beibei, Yi Luocai, Huang Jiabao, Hu Chengsi, Lei Huxu, Wu Xiaojun, Wen Zhenhai, Chen Qingjun, Song Li
National Synchrotron Radiation Laboratory, State Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China.
Nat Commun. 2025 Jul 26;16(1):6894. doi: 10.1038/s41467-025-61763-5.
Developing durable acidic oxygen evolution reaction catalysts is critical for industrial proton exchange membrane water electrolyzers. We incorporate high-entropy atoms (Co, Ni, Cu, Mn, Sm) into RuO (RuO-HEAE) via annealing, achieving remarkably high stability (>1500 h at 100 mA cm). In situ differential electrochemical mass spectrometry and operando Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy reveal RuO-HEAE follows a dual-site oxide path mechanism instead of the conventional adsorbate evolution mechanism. Quantitative Fourier-transformed extended X-ray absorption fine structure fitting and density functional theory calculations show this mechanistic shift stems from an elongated Ru-M distance in second coordination shell of RuO-HEAE, enabling direct O-O coupling. This OPM-type catalyst delivers ~1500 h of stable operation at 1 A cm and 50 °C, demonstrating superior durability versus most reported RuO-based catalysts. This work provides fundamental insights for designing highly stable proton exchange membrane water electrolysis.
开发耐用的析氧反应催化剂对于工业质子交换膜水电解槽至关重要。我们通过退火将高熵原子(钴、镍、铜、锰、钐)掺入RuO(RuO-HEAE)中,实现了显著的高稳定性(在100 mA cm下超过1500小时)。原位差分电化学质谱和原位衰减全反射表面增强红外吸收光谱表明,RuO-HEAE遵循双位点氧化物路径机制,而不是传统的吸附物析出机制。定量傅里叶变换扩展X射线吸收精细结构拟合和密度泛函理论计算表明,这种机理转变源于RuO-HEAE第二配位层中Ru-M距离的延长,从而实现直接的O-O耦合。这种OPM型催化剂在1 A cm和50°C下可稳定运行约1500小时,与大多数报道的RuO基催化剂相比,具有卓越的耐久性。这项工作为设计高度稳定的质子交换膜水电解提供了基本见解。