Suppr超能文献

六氟磷酸盐添加剂可在安培级电流密度下实现持久的海水氧化。

Hexafluorophosphate additive enables durable seawater oxidation at ampere-level current density.

作者信息

He Xun, Yao Yongchao, Zhang Limei, Wang Hefeng, Tang Hong, Jiang Wenlong, Ren Yuchun, Nan Jue, Luo Yongsong, Wu Tongwei, Luo Fengming, Tang Bo, Sun Xuping

机构信息

Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

出版信息

Nat Commun. 2025 May 29;16(1):4998. doi: 10.1038/s41467-025-60413-0.

Abstract

Direct seawater electrolysis at ampere-level current densities, powered by coastal/offshore renewables, is an attractive avenue for sustainable hydrogen production but is undermined by chloride-induced anode degradation. Here we demonstrate the use of hexafluorophosphate (PF₆⁻) as an electrolyte additive to overcome this limitation, achieving prolonged operation for over 5,000 hours at 1 A cm and 2300 hours at 2 A cm using NiFe layered double hydroxide (LDH) as anode. Together with the experimental findings, PF₆⁻ can intercalate into LDH interlayers and adsorb onto the electrode surface under an applied electric field, blocking Cl⁻ and stabilizing Fe to prevent segregation. The constant-potential molecular dynamics simulations further reveal the accumulation of high surface concentrations of PF on the electrode surface that can effectively exclude Cl, mitigating corrosion. Our work showcases synchronous interlayer and surface engineering by single non-oxygen anion species to enable Cl rejection and marks a crucial step forward in seawater electrolysis.

摘要

由沿海/近海可再生能源驱动,在安培级电流密度下进行直接海水电解,是可持续制氢的一个有吸引力的途径,但受到氯离子导致的阳极降解的影响。在此,我们展示了使用六氟磷酸盐(PF₆⁻)作为电解质添加剂来克服这一限制,以镍铁层状双氢氧化物(LDH)为阳极,在1 A/cm²下实现了超过5000小时的长时间运行,在2 A/cm²下实现了2300小时的运行。结合实验结果,PF₆⁻可以在施加电场的情况下插入LDH层间并吸附在电极表面,阻挡Cl⁻并稳定Fe以防止偏析。恒电位分子动力学模拟进一步揭示了电极表面PF的高表面浓度积累,这可以有效排除Cl,减轻腐蚀。我们的工作展示了通过单一非氧阴离子物种进行同步层间和表面工程以实现Cl排斥,标志着海水电解向前迈出了关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45ac/12122868/f35f09fc9d16/41467_2025_60413_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验