Suppr超能文献

用于肾小球滤过率测定的无CT肾脏单光子发射计算机断层扫描

CT-free kidney single-photon emission computed tomography for glomerular filtration rate.

作者信息

Kwon Kyounghyoun, Oh Dongkyu, Kim Ji Hye, Yoo Jihyung, Lee Won Woo

机构信息

Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong- gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea.

Department of Nuclear Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.

出版信息

Sci Rep. 2025 Jul 25;15(1):27105. doi: 10.1038/s41598-025-12595-2.

Abstract

This study explores an artificial intelligence-based approach to perform CT-free quantitative SPECT for kidney imaging using Tc-99 m DTPA, aiming to estimate glomerular filtration rate (GFR) without relying on CT. A total of 1000 SPECT/CT scans were used to train and test a deep-learning model that segments kidneys automatically based on synthetic attenuation maps (µ-maps) derived from SPECT alone. The model employed a residual U-Net with edge attention and was optimized using windowing-maximum normalization and a generalized Dice similarity loss function. Performance evaluation showed strong agreement with manual CT-based segmentation, achieving a Dice score of 0.818 ± 0.056 and minimal volume differences of 17.9 ± 43.6 mL (mean ± standard deviation). An additional set of 50 scans confirmed that GFR calculated from the AI-based CT-free SPECT (109.3 ± 17.3 mL/min) was nearly identical to the conventional SPECT/CT method (109.2 ± 18.4 mL/min, p = 0.9396). This CT-free method reduced radiation exposure by up to 78.8% and shortened segmentation time from 40 min to under 1 min. The findings suggest that AI can effectively replace CT in kidney SPECT imaging, maintaining quantitative accuracy while improving safety and efficiency.

摘要

本研究探索了一种基于人工智能的方法,使用Tc-99 m DTPA进行无CT定量单光子发射计算机断层扫描(SPECT)肾脏成像,旨在不依赖CT估计肾小球滤过率(GFR)。总共1000次SPECT/CT扫描用于训练和测试一个深度学习模型,该模型基于仅从SPECT得出的合成衰减图(µ图)自动分割肾脏。该模型采用了带有边缘注意力的残差U-Net,并使用窗口最大化归一化和广义骰子相似性损失函数进行优化。性能评估显示与基于手动CT的分割有很强的一致性,骰子分数为0.818±0.056,最小体积差异为17.9±43.6 mL(平均值±标准差)。另外一组50次扫描证实,基于人工智能的无CT SPECT计算出的GFR(109.3±17.3 mL/min)与传统SPECT/CT方法(109.2±18.4 mL/min,p = 0.9396)几乎相同。这种无CT方法将辐射暴露减少了高达78.8%,并将分割时间从40分钟缩短至1分钟以内。研究结果表明,人工智能可以在肾脏SPECT成像中有效替代CT,在提高安全性和效率的同时保持定量准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90f6/12297543/b38eecd20744/41598_2025_12595_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验