Mori Tim, Zaharia Oana P, Straßburger Klaus, Dennis John M, Mai Knut, Kabisch Stefan, Bornstein Stefan, Szendroedi Julia, Blüher Matthias, Meyhöfer Svenja, Seissler Jochen, Birkenfeld Andreas, Stefan Norbert, Roden Michael, Wagner Robert, Kuß Oliver
Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
Diabetologia. 2025 Jul 25. doi: 10.1007/s00125-025-06486-4.
AIMS/HYPOTHESIS: Despite continued interest in precision diagnostics and type 2 diabetes subtypes, the challenge of uncertainty in the classification of individuals into subtypes remains. This study introduces a novel method for quantifying and accounting for classification uncertainty in type 2 diabetes subtypes.
Building on recommendations from the ADA/EASD Precision Medicine in Diabetes Initiative, we quantified classification uncertainty using the normalised relative entropy (NRE), computed from distances to cluster centroids. A lower NRE value indicates greater uncertainty in an individual's cluster assignment. We examined the NRE in a cohort of 859 individuals with recent-onset type 2 diabetes from the prospective, observational German Diabetes Study (GDS) and compared it across previously identified diabetes subtypes, defined by age, BMI, HbA, HOMA-IR and HOMA-B. Predicted 10 year CVD risk (SCORE2-Diabetes) of the subtypes was evaluated with and without accounting for classification uncertainty.
Individuals with mild age-related diabetes (n=395) and mild obesity-related diabetes (n=316) had a median NRE of 0.155 (95% CI 0.142, 0.177) and 0.119 (95% CI 0.107, 0.131), respectively. By contrast, individuals with severe insulin-resistant diabetes (n=130) and severe insulin-deficient diabetes (n=18) had a lower median NRE of 0.086 (95% CI 0.075, 0.108) and 0.082 (95% CI 0.071, 0.109), respectively. After weighting individuals by classification certainty, the proportion of variation in SCORE2-Diabetes explained by the subtypes (R) increased from 17.4% (95% CI 12.8, 23.0) to 31.5% (95% CI 26.4, 37.1). The predicted 10 year CVD risk of the mild age-related diabetes subtype increased from 10.3% (95% CI 9.8, 10.7) to 11.6% (95% CI 11.2, 12.0).
CONCLUSIONS/INTERPRETATION: The NRE provides a means to quantify and compare individual classification uncertainty in type 2 diabetes subtypes. Classification uncertainty varied between subtypes and individuals with type 2 diabetes, and accounting for it improved the ability of the subtypes to predict 10 year CVD risk.
目的/假设:尽管对精准诊断和2型糖尿病亚型持续关注,但将个体分类到亚型时存在不确定性这一挑战依然存在。本研究引入了一种新方法,用于量化和考量2型糖尿病亚型分类中的不确定性。
基于美国糖尿病协会/欧洲糖尿病研究学会糖尿病精准医学倡议的建议,我们使用归一化相对熵(NRE)来量化分类不确定性,该值由到聚类中心的距离计算得出。NRE值越低,表明个体聚类分配的不确定性越大。我们在来自前瞻性观察性德国糖尿病研究(GDS)的859例近期发病的2型糖尿病患者队列中检测了NRE,并在先前根据年龄、体重指数、糖化血红蛋白、胰岛素抵抗指数(HOMA-IR)和胰岛β细胞功能指数(HOMA-β)定义的糖尿病亚型间进行比较。在考量和不考量分类不确定性的情况下,评估了各亚型的预测10年心血管疾病风险(SCORE2-糖尿病模型)。
轻度年龄相关性糖尿病患者(n = 395)和轻度肥胖相关性糖尿病患者(n = 316)的NRE中位数分别为0.155(95%置信区间0.142,0.177)和0.119(95%置信区间0.107,0.131)。相比之下,重度胰岛素抵抗性糖尿病患者(n = 130)和重度胰岛素缺乏性糖尿病患者(n = 18)的NRE中位数较低,分别为0.086(95%置信区间0.075,0.108)和0.082(95%置信区间0.071,0.109)。在根据分类确定性对个体进行加权后,各亚型对SCORE2-糖尿病模型变异的解释比例(R)从17.4%(95%置信区间12.8,23.0)增至31.5%(95%置信区间26.4,37.1)。轻度年龄相关性糖尿病亚型的预测10年心血管疾病风险从10.3%(95%置信区间9.8,10.7)增至11.6%(95%置信区间11.2,12.0)。
结论/解读:NRE提供了一种量化和比较2型糖尿病亚型个体分类不确定性的方法。2型糖尿病各亚型和个体之间的分类不确定性存在差异,考量分类不确定性可提高各亚型预测10年心血管疾病风险的能力。