Suppr超能文献

一种基于二维矩阵阵列的用于三维可控激光诱导荧光成像的新型通用系统。

A New Versatile System for 3D Steered LIFU Based on 2D Matrix Arrays.

作者信息

Tretbar Steffen H, Fournelle Marc, Risser Christoph, Hewener Holger, Degel Christian, Bost Wolfgang, Weber Peter, Mohammadjavadi Morteza, Glover Gary H, Butts Pauly Kim, Melzer Andreas

机构信息

Department of Ultrasound, Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany.

Innovation Center Computer Assisted Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany.

出版信息

Brain Connect. 2025 Jul 28. doi: 10.1177/21580014251362816.

Abstract

Ultrasound is a promising new approach for noninvasive brain stimulation. Low-intensity focused ultrasound (LIFU) allows targeting the deep brain with high spatial and temporal resolution. For clinical use, ultrasound systems must fulfill specific requirements. Three-dimensional (3D) steering and focusing either requires mechanical displacement of (focused) transducers or multielement arrays and corresponding multichannel electronics. Since the waveform has an impact of the induced neurostimulation effect, electronics need sufficient flexibility for generating arbitrary temporal signal patterns. For compensation of skull aberration artifacts, elements must be excited with defined phase resulting of phase aberration correction (PAC) algorithms. Finally, for being clinically usable, systems must be combined with planning hardware and software. A versatile system for 3D steered LIFU based on two-dimensional matrix arrays was designed, fabricated, and characterized in terms of focusing, steering, and output of temporal patterns. Our PAC algorithm was validated on an skull. The system was tested for compliance with defined medical device standard by accredited laboratories, and an initial Magnetic resonance imaging (MRI) phantom study was performed. Our system allows 3D beam steering and focusing with lateral focus sizes down to 4 mm, which is less than the size of a human gyrus, such that detailed targeting is possible. Arbitrary temporal signal patterns (different wave forms, pulse length, duty cycle, and ramping) were generated. Different software interfaces allow patient-specific planning with a Magnetic resonance Tomograph (MR)- or neuronavigation-based workflow, in which a custom-developed PAC algorithm allows compensation of the skull bone. The absence of transducer susceptibility artifacts was shown in the MRI phantom study, and the acoustic focus was localized using magnetic resonance acoustic radiation force imaging. Our new versatile ultrasound neuromodulation platform represents a compromise between conformal helmet-like systems and single element transducer setups. It is flexible in terms of spatiotemporal stimulation patterns and can be accommodated to different workflows. Impact Statement Progress in the field of ultrasound neurostimulation is depending on the availability of suitable hardware fulfilling a range of practical, technical, safety, and regulatory requirements. Systems must fit in established clinical workflows (e.g., usable with MR and/or neuronavigation systems), allow accessing deep brain regions, and generate defined spatiotemporal ultrasound patterns. Furthermore, basic regulatory constraints (e.g., IEC 60601-1) must be fulfilled. Our new low-intensity focused ultrasound (LIFU) system addresses these requirements and is flexible enough for use in a research environment. It was developed for facilitating the clinical transfer of LIFU and helping to gain a better understanding of underlying effects in ultrasound neurostimulation.

摘要

超声是一种很有前景的无创脑刺激新方法。低强度聚焦超声(LIFU)能够以高空间和时间分辨率靶向深部脑区。对于临床应用,超声系统必须满足特定要求。三维(3D)操控和聚焦要么需要(聚焦)换能器或多元件阵列以及相应的多通道电子设备进行机械位移。由于波形会对诱导的神经刺激效应产生影响,电子设备需要具备足够的灵活性以生成任意的时间信号模式。为了补偿颅骨像差伪影,必须根据相位像差校正(PAC)算法以确定的相位激励元件。最后,为了能够临床使用,系统必须与规划硬件和软件相结合。设计、制造了一种基于二维矩阵阵列的用于3D操控LIFU的通用系统,并在聚焦、操控和时间模式输出方面对其进行了表征。我们的PAC算法在一个颅骨上得到了验证。该系统由认可的实验室测试是否符合既定的医疗器械标准,并进行了初步的磁共振成像(MRI)体模研究。我们的系统允许进行3D波束操控和聚焦,横向聚焦尺寸小至4毫米,小于人类脑回的尺寸,从而能够进行精确靶向。能够生成任意的时间信号模式(不同的波形、脉冲长度、占空比和斜坡信号)。不同的软件接口允许通过基于磁共振断层扫描(MR)或神经导航的工作流程进行针对患者的规划,其中定制开发的PAC算法能够补偿颅骨。MRI体模研究表明不存在换能器敏感伪影,并使用磁共振声辐射力成像对声聚焦进行了定位。我们新的通用超声神经调制平台是一种介于贴合头盔式系统和单元素换能器设置之间的折衷方案。它在时空刺激模式方面具有灵活性,并且能够适应不同的工作流程。影响声明超声神经刺激领域的进展取决于是否有合适的硬件,该硬件要满足一系列实际、技术、安全和监管要求。系统必须适合既定的临床工作流程(例如,可与MR和/或神经导航系统一起使用),能够进入深部脑区,并生成确定的时空超声模式。此外,还必须满足基本的监管限制(例如,IEC 60601 - 1)。我们新的低强度聚焦超声(LIFU)系统满足了这些要求,并且足够灵活可用于研究环境。它的开发是为了促进LIFU的临床转化,并有助于更好地理解超声神经刺激的潜在效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验