Suppr超能文献

使用静电逐层沉积技术对哺乳动物细胞进行丝离子聚合物的临时纳米封装。

Temporary Nanoencapsulation of Mammalian Cells With Silk Ionomers Using Electrostatic Layer-By-Layer Deposition Technique.

作者信息

Kumarasinghe Udathari, Sutaria Julian M, Majumder Nilotpal, Li Xinxin, Jacobus Charlotte S, Battle Peter F, Bernstein Shelby, Staii Cristian, Chen Ying, Kaplan David L

机构信息

Department of Physics and Astronomy, Tufts University, Medford, Massachusetts.

Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.

出版信息

Curr Protoc. 2025 Jul;5(7):e70184. doi: 10.1002/cpz1.70184.

Abstract

Nanoencapsulation of mammalian cells is a novel approach offering a protective microenvironment for cells, enabling their sustained viability and function in hostile or non-physiological conditions. This protection is particularly valuable in applications, such as cell therapy, tissue engineering, and immunotherapy, where maintaining cell functionality is critical for therapeutic success. The encapsulation process involves surrounding cells with a biomaterial barrier that acts as an artificial cell wall, shielding them from immune system attacks, toxic substances, and mechanical stress, while still allowing the exchange of essential nutrients, gases, and waste; thus, preserving cell viability and function during biochemical processing and applications. Utilizing THP-1 immune cells and human intestinal organoids (HIOs) as examples, this article provides a comprehensive guide for encapsulating single cells and stem cell-derived large cell aggregates with silk ionomers derived from the silkworm Bombyx mori, applying an electrostatic layer-by-layer deposition technique. We provide a detailed protocol for preparing silk fibroin (SF) from silk cocoons, synthesizing silk ionomers using the prepared SF, and encapsulating immune cells and organoids through electrostatic layer-by-layer deposition. This article also outlines the characterization methods, such as confocal microscopy, scanning electron microscopy (SEM), quartz crystal microbalance with dissipation monitoring (QCM-D) for coating thickness, and atomic force microscopy (AFM) for stiffness measurement. Guidelines for assessing cellular function post-encapsulation are also provided, enabling researchers to build on these methods and advance silk-based encapsulation in biomedical applications. © 2025 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of aminated and carboxylated silk ionomers Basic Protocol 2: THP-1 cell and human intestinal organoid culture Basic Protocol 3: Nanoencapsulation of THP-1 cells and organoids through electrostatic layer-by-layer deposition Basic Protocol 4: Imaging: Scanning electron microscopy and confocal microscopy Basic Protocol 5: Quartz crystal microbalance with dissipation monitoring analysis: Determining coating thickness Basic Protocol 6: Atomic force microscopy: Measuring cell stiffness Basic Protocol 7: Cell viability and propagation post-encapsulation.

摘要

哺乳动物细胞的纳米封装是一种新颖的方法,可为细胞提供保护性微环境,使其在恶劣或非生理条件下保持持续的活力和功能。这种保护在细胞治疗、组织工程和免疫治疗等应用中尤为重要,因为维持细胞功能对于治疗成功至关重要。封装过程涉及用生物材料屏障围绕细胞,该屏障充当人工细胞壁,保护细胞免受免疫系统攻击、有毒物质和机械应力的影响,同时仍允许必需营养物质、气体和废物的交换;从而在生化处理和应用过程中保持细胞活力和功能。本文以THP-1免疫细胞和人肠道类器官(HIOs)为例,提供了一份全面指南,介绍如何使用源自家蚕Bombyx mori的丝离聚物通过静电逐层沉积技术封装单个细胞和干细胞衍生的大细胞聚集体。我们提供了从蚕茧制备丝素蛋白(SF)、使用制备的SF合成丝离聚物以及通过静电逐层沉积封装免疫细胞和类器官的详细方案。本文还概述了表征方法,如共聚焦显微镜、扫描电子显微镜(SEM)、用于涂层厚度监测的石英晶体微天平耗散监测(QCM-D)以及用于刚度测量的原子力显微镜(AFM)。还提供了封装后评估细胞功能的指南,使研究人员能够在此基础上进一步推进基于丝的封装在生物医学应用中的发展。© 2025威利期刊有限责任公司。基本方案1:胺化和羧化丝离聚物的合成 基本方案2:THP-1细胞和人肠道类器官培养 基本方案3:通过静电逐层沉积对THP-1细胞和类器官进行纳米封装 基本方案4:成像:扫描电子显微镜和共聚焦显微镜 基本方案5:石英晶体微天平耗散监测分析:确定涂层厚度 基本方案6:原子力显微镜:测量细胞刚度 基本方案7:封装后细胞活力和增殖。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验