Suppr超能文献

通过曲线拟合和机器学习预测胎儿生长情况。

Predicting Fetal Growth with Curve Fitting and Machine Learning.

作者信息

Zhang Huan, Hung Chuan-Sheng, Lin Chun-Hung Richard, Yu Hong-Ren, Zheng You-Cheng, Yu Cheng-Han, Tsai Chih-Min, Huang Ting-Hsin

机构信息

Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan.

Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan.

出版信息

Bioengineering (Basel). 2025 Jul 3;12(7):730. doi: 10.3390/bioengineering12070730.

Abstract

Monitoring fetal growth throughout pregnancy is essential for early detection of developmental abnormalities. This study developed a Taiwan-specific fetal growth reference using a web-based data collection platform and polynomial regression modeling. We analyzed ultrasound data from 980 pregnant women, encompassing 8350 prenatal scans, to model six key fetal biometric parameters: abdominal circumference, crown-rump length, estimated fetal weight, head circumference, biparietal diameter, and femur length. Quadratic regression was selected based on a balance of performance and simplicity, with R values exceeding 0.95 for most parameters. Confidence intervals and real-time anomaly detection were implemented through the platform. The results demonstrate the potential for efficient, population-specific fetal growth monitoring in clinical settings.

摘要

在整个孕期监测胎儿生长对于早期发现发育异常至关重要。本研究利用基于网络的数据收集平台和多项式回归模型开发了一个台湾地区特有的胎儿生长参考标准。我们分析了980名孕妇的超声数据,包括8350次产前扫描,以建立六个关键胎儿生物测量参数的模型:腹围、头臀长、估计胎儿体重、头围、双顶径和股骨长度。基于性能和简单性的平衡选择了二次回归,大多数参数的R值超过0.95。通过该平台实现了置信区间和实时异常检测。结果表明在临床环境中进行高效、针对特定人群的胎儿生长监测具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcb3/12292132/2875c43ce37b/bioengineering-12-00730-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验