Kartal Erhan, Etli Yasin
Department of Forensic Medicine, Van Yüzüncü Yıl University, Van 65090, Turkey.
Diagnostics (Basel). 2025 Jul 16;15(14):1794. doi: 10.3390/diagnostics15141794.
Vertebral degenerative features are promising but often subjectively scored indicators for adult age estimation. We evaluated an objective surface roughness metric, the "average distance to the fitted ellipse" score (DS), calculated automatically for every vertebra from C7 to S1 on routine CT images. CT scans of 176 adults (94 males, 82 females; 21-94 years) were retrospectively analyzed. For each vertebra, the mean orthogonal deviation of the anterior superior endplate from an ideal ellipse was extracted. Sex-specific multiple linear regression served as a baseline; support vector regression (SVR), random forest (RF), k-nearest neighbors (k-NN), and Gaussian naïve-Bayes pseudo-regressor (GNB-R) were tuned with 10-fold cross-validation and evaluated on a 20% hold-out set. Performance was quantified with the standard error of the estimate (SEE). DS values correlated moderately to strongly with age (peak r = 0.60 at L3-L5). Linear regression explained 40% (males) and 47% (females) of age variance (SEE ≈ 11-12 years). Non-parametric learners improved precision: RF achieved an SEE of 8.49 years in males (R = 0.47), whereas k-NN attained 10.8 years (R = 0.45) in women. Automated analysis of vertebral cortical roughness provides a transparent, observer-independent means of estimating adult age with accuracy approaching that of more complex deep learning pipelines. Streamlining image preparation and validating the approach across diverse populations are the next steps toward forensic adoption.
椎体退变特征是用于成人年龄估计的有前景但常主观评分的指标。我们评估了一种客观的表面粗糙度指标,即“到拟合椭圆的平均距离”分数(DS),它可在常规CT图像上针对从C7到S1的每个椎体自动计算得出。对176名成年人(94名男性,82名女性;年龄21 - 94岁)的CT扫描进行了回顾性分析。对于每个椎体,提取其前上终板与理想椭圆的平均正交偏差。以性别特异性多元线性回归作为基线;支持向量回归(SVR)、随机森林(RF)、k近邻(k - NN)和高斯朴素贝叶斯伪回归器(GNB - R)通过10折交叉验证进行调优,并在20%的留出集上进行评估。性能用估计标准误差(SEE)进行量化。DS值与年龄呈中度至高度相关(在L3 - L5处r峰值为0.60)。线性回归解释了40%(男性)和47%(女性)的年龄方差(SEE≈11 - 12岁)。非参数学习器提高了精度:RF在男性中实现了8.49岁的SEE(R = 0.47),而k - NN在女性中达到了10.8岁(R = 0.45)。椎体皮质粗糙度的自动分析提供了一种透明的、与观察者无关的估计成人年龄的方法,其准确性接近更复杂的深度学习管道。简化图像准备并在不同人群中验证该方法是迈向法医应用的下一步。