Suppr超能文献

基于图像处理的模型,用于使用双树复小波变换和径向基函数神经网络评估钛基合金的表面粗糙度

Image-processing-based model for surface roughness evaluation in titanium based alloys using dual tree complex wavelet transform and radial basis function neural networks.

作者信息

Vishwanatha J S, Srinivasa Pai P, D'Mello Grynal, Sampath Kumar L, Bairy Raghavendra, Nagaral Madeva, Channa Keshava Naik N, Lamani Venkatesh T, Chandrashekar A, Yunus Khan T M, Almakayeel Naif, Ahmad Khan Wahaj

机构信息

Department of Mechanical Engineering, NMAM Institute of Technology, NITTE (Deemed to be University), Nitte, Karnataka, 574110, India.

Department of Mechanical Engineering, Sir MVIT, Bengaluru, Karnataka, 562157, India.

出版信息

Sci Rep. 2024 Nov 16;14(1):28261. doi: 10.1038/s41598-024-75194-7.

Abstract

In this study, we examine the assessment of surface roughness on turned surfaces of Ti 6Al 4V using a computer vision system. We utilize the Dual-Tree Complex Wavelet Transform (DTCWT) to break down the images of the turned surface into sub-images oriented in directions. Three different methods of feature generation have been compared, i.e., the use of Gray-Level Co-Occurrence Matrix (GLCM) and DTCWT-based extraction of second-order statistical features, DTCWT Image fusion, and the use of GLCM for feature extraction, and DTCWT image fusion using Particle Swarm Optimization (PSO) based GLCM features. Principal Component Analysis (PCA) was utilized to identify and select features. The model was developed using a Radial Basis Function Neural Network (RBFNN). Accordingly, six models were designed based on the three feature generation methods, considering all features and features selected using PCA. The RBFNN model, which incorporates DTCWT Image fusion and utilizes PSO with PCA features, achieved a training data prediction accuracy of 100% and a test data prediction accuracy of 99.13%.

摘要

在本研究中,我们使用计算机视觉系统来检测Ti 6Al 4V车削表面的粗糙度评估。我们利用双树复数小波变换(DTCWT)将车削表面的图像分解为不同方向的子图像。比较了三种不同的特征生成方法,即使用灰度共生矩阵(GLCM)和基于DTCWT的二阶统计特征提取、DTCWT图像融合,以及使用GLCM进行特征提取和基于粒子群优化(PSO)的GLCM特征的DTCWT图像融合。利用主成分分析(PCA)来识别和选择特征。该模型是使用径向基函数神经网络(RBFNN)开发的。因此,基于这三种特征生成方法,考虑所有特征和使用PCA选择的特征,设计了六个模型。结合DTCWT图像融合并利用带有PCA特征的PSO的RBFNN模型,训练数据预测准确率达到100%,测试数据预测准确率达到99.13%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3238/11569223/c7b6d15933a4/41598_2024_75194_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验