Suppr超能文献

钙电流和钾电流对LR1模型中螺旋波动力学的影响。

Impact of Calcium and Potassium Currents on Spiral Wave Dynamics in the LR1 Model.

作者信息

Yuan Xiaoping, Zheng Qianqian

机构信息

Information Engineering College, Hangzhou Dianzi University, Hangzhou 311305, China.

Henan Joint International Research Laboratory of High Performance Computation for Complex Systems, School of Science, Xuchang University, Xuchang 461000, China.

出版信息

Entropy (Basel). 2025 Jun 27;27(7):690. doi: 10.3390/e27070690.

Abstract

Spiral wave dynamics in cardiac tissue are critically implicated in the pathogenesis of arrhythmias. This study investigates the effects of modulating calcium and potassium currents on spiral wave stability in a two-dimensional cardiac model. The gate variable that dynamically regulates the opening probability of ion channels also plays a significant role in the control of the spiral wave dynamics. We demonstrate that reducing gate variables accelerates wave propagation, thins spiral arms, and shortens action potential duration, ultimately inducing dynamic instability. Irregular electrocardiogram (ECG) patterns and altered action potential morphology further suggest an enhanced arrhythmogenic potential. These findings elucidate the ionic mechanisms underlying spiral wave breakup, providing both theoretical insights and practical implications for the development of targeted arrhythmia treatments.

摘要

心脏组织中的螺旋波动力学与心律失常的发病机制密切相关。本研究调查了在二维心脏模型中调节钙电流和钾电流对螺旋波稳定性的影响。动态调节离子通道开放概率的门控变量在螺旋波动力学控制中也起着重要作用。我们证明,降低门控变量会加速波的传播、使螺旋臂变细并缩短动作电位持续时间,最终导致动态不稳定。不规则的心电图(ECG)模式和改变的动作电位形态进一步表明致心律失常潜力增强。这些发现阐明了螺旋波破裂背后的离子机制,为开发针对性的心律失常治疗方法提供了理论见解和实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33a/12295187/e41dfe024937/entropy-27-00690-g001.jpg

相似文献

1
Impact of Calcium and Potassium Currents on Spiral Wave Dynamics in the LR1 Model.
Entropy (Basel). 2025 Jun 27;27(7):690. doi: 10.3390/e27070690.
4
Role of Dynamical Instability in QT Interval Variability and Early Afterdepolarization Propensity.
bioRxiv. 2025 Jun 17:2025.06.11.659221. doi: 10.1101/2025.06.11.659221.
6
Audit and feedback: effects on professional practice.
Cochrane Database Syst Rev. 2025 Mar 25;3(3):CD000259. doi: 10.1002/14651858.CD000259.pub4.
9
Mechanistic Relevance of Ventricular Arrhythmias in Heart Failure with Preserved Ejection Fraction.
Int J Mol Sci. 2024 Dec 14;25(24):13423. doi: 10.3390/ijms252413423.
10
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.

本文引用的文献

2
Bistable spiral wave dynamics in electrically excitable media.
Phys Rev E. 2023 Dec;108(6-1):064405. doi: 10.1103/PhysRevE.108.064405.
4
The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue.
Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H826-H837. doi: 10.1152/ajpheart.00608.2020. Epub 2021 Jan 1.
5
Stability of spatially discordant repolarization alternans in cardiac tissue.
Chaos. 2020 Dec;30(12):123141. doi: 10.1063/5.0029209.
6
Spatially Discordant Repolarization Alternans in the Absence of Conduction Velocity Restitution.
Biophys J. 2020 May 19;118(10):2574-2587. doi: 10.1016/j.bpj.2020.02.008. Epub 2020 Feb 15.
7
Memory-induced nonlinear dynamics of excitation in cardiac diseases.
Phys Rev E. 2018 Apr;97(4-1):042414. doi: 10.1103/PhysRevE.97.042414.
8
Memory-Induced Chaos in Cardiac Excitation.
Phys Rev Lett. 2017 Mar 31;118(13):138101. doi: 10.1103/PhysRevLett.118.138101. Epub 2017 Mar 28.
9
Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence.
Annu Rev Physiol. 2015;77:29-55. doi: 10.1146/annurev-physiol-021014-071622. Epub 2014 Oct 17.
10
A quantitative comparison of the behavior of human ventricular cardiac electrophysiology models in tissue.
PLoS One. 2014 Jan 8;9(1):e84401. doi: 10.1371/journal.pone.0084401. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验