Yuan Xiaoping, Zheng Qianqian
Information Engineering College, Hangzhou Dianzi University, Hangzhou 311305, China.
Henan Joint International Research Laboratory of High Performance Computation for Complex Systems, School of Science, Xuchang University, Xuchang 461000, China.
Entropy (Basel). 2025 Jun 27;27(7):690. doi: 10.3390/e27070690.
Spiral wave dynamics in cardiac tissue are critically implicated in the pathogenesis of arrhythmias. This study investigates the effects of modulating calcium and potassium currents on spiral wave stability in a two-dimensional cardiac model. The gate variable that dynamically regulates the opening probability of ion channels also plays a significant role in the control of the spiral wave dynamics. We demonstrate that reducing gate variables accelerates wave propagation, thins spiral arms, and shortens action potential duration, ultimately inducing dynamic instability. Irregular electrocardiogram (ECG) patterns and altered action potential morphology further suggest an enhanced arrhythmogenic potential. These findings elucidate the ionic mechanisms underlying spiral wave breakup, providing both theoretical insights and practical implications for the development of targeted arrhythmia treatments.
心脏组织中的螺旋波动力学与心律失常的发病机制密切相关。本研究调查了在二维心脏模型中调节钙电流和钾电流对螺旋波稳定性的影响。动态调节离子通道开放概率的门控变量在螺旋波动力学控制中也起着重要作用。我们证明,降低门控变量会加速波的传播、使螺旋臂变细并缩短动作电位持续时间,最终导致动态不稳定。不规则的心电图(ECG)模式和改变的动作电位形态进一步表明致心律失常潜力增强。这些发现阐明了螺旋波破裂背后的离子机制,为开发针对性的心律失常治疗方法提供了理论见解和实际意义。