Department of Medicine, University of California, Los Angeles, California, USA.
School of Science, Jiangxi University of Science and Technology, Ganzhou, China.
J Physiol. 2018 Apr 15;596(8):1341-1355. doi: 10.1113/JP275492. Epub 2018 Mar 2.
T-wave alternans (TWA) and T-wave lability (TWL) are precursors of ventricular arrhythmias in long QT syndrome; however, the mechanistic link remains to be clarified. Computer simulations show that action potential duration (APD) prolongation and slowed heart rates promote APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos can exacerbate pre-existing or induce de novo APD dispersion, which combines with enhanced I to result in premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs can directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or further exacerbate the APD dispersion to cause spontaneous initiation of ventricular arrhythmias. Experiments conducted in transgenic long QT rabbits show that PVC alternans occurs at slow heart rates, preceding spontaneous intuition of ventricular arrhythmias.
T-wave alternans (TWA) and irregular beat-to-beat T-wave variability or T-wave lability (TWL), the ECG manifestations of action potential duration (APD) alternans and variability, are precursors of ventricular arrhythmias in long QT syndromes. TWA and TWL in patients tend to occur at normal heart rates and are usually potentiated by bradycardia. Whether or how TWA and TWL at normal or slow heart rates are causally linked to arrhythmogenesis remains unknown. In the present study, we used computer simulations and experiments of a transgenic rabbit model of long QT syndrome to investigate the underlying mechanisms. Computer simulations showed that APD prolongation and slowed heart rates caused early afterdepolarization-mediated APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos exacerbated pre-existing APD dispersion and, in addition, APD chaos could also induce APD dispersion de novo via chaos desynchronization. Increased APD dispersion, combined with substantially enhanced I , resulted in a tissue-scale dynamical instability that gave rise to the spontaneous occurrence of unidirectionally propagating premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs could directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or could block the following sinus beat to result in a longer RR interval, which further exacerbated the APD dispersion giving rise to the spontaneous occurrence of ventricular arrhythmias. Slow heart rate-induced PVC alternans was observed in experiments of transgenic LQT2 rabbits under isoproterenol, which was associated with increased APD dispersion and spontaneous occurrence of ventricular arrhythmias, in agreement with the theoretical predictions.
T 波电交替(TWA)和 T 波不稳定(TWL)是长 QT 综合征室性心律失常的先兆;然而,其机制联系仍有待阐明。计算机模拟表明,动作电位时程(APD)延长和心率减慢促进 APD 交替和混沌,分别表现为 TWA 和 TWL。区域性 APD 交替和混沌会加剧预先存在的或诱发新的 APD 离散,同时增强 I 导致源自 APD 梯度区的过早搏动(PVC)。这些 PVC 可以直接退化为折返性心律失常,而不需要额外的组织底物,也不需要进一步加剧 APD 离散以引起室性心律失常的自发发作。在长 QT 兔的转基因实验中表明,PVC 交替在慢心率下发生,早于室性心律失常的自发发作。
T 波电交替(TWA)和不规则的逐搏 T 波变化或 T 波不稳定(TWL),是动作电位时程(APD)交替和变异的心电图表现,是长 QT 综合征室性心律失常的先兆。TWA 和 TWL 在患者中往往发生在正常心率,通常由心动过缓增强。TWA 和 TWL 在正常或慢心率下是如何因果相关的心律失常仍然未知。在本研究中,我们使用计算机模拟和长 QT 综合征转基因兔模型的实验来研究潜在的机制。计算机模拟表明,APD 延长和减慢的心率导致早期后除极介导的 APD 交替和混沌,分别表现为 TWA 和 TWL。区域性 APD 交替和混沌加剧了预先存在的 APD 离散,此外,APD 混沌也可以通过混沌去同步化诱发新的 APD 离散。增加的 APD 离散,与大大增强的 I 相结合,导致组织尺度的动力学不稳定,导致源自 APD 梯度区的单向传播的过早搏动(PVC)的自发发生。这些 PVC 可以直接退化为折返性心律失常,而不需要额外的组织底物,也可以阻止随后的窦性搏动,导致更长的 RR 间隔,这进一步加剧了 APD 离散,导致室性心律失常的自发发生。在异丙肾上腺素作用下的转基因 LQT2 兔实验中观察到了慢心率诱导的 PVC 交替,这与 APD 离散的增加和室性心律失常的自发发生有关,与理论预测一致。