Hsieh Cheng-Yu, Lin Jia-Ni, Chou Yi-Fan, Hsu Chuan-Jen, Chen Peir-Rong, Wen Yu-Hsuan, Wu Chen-Chi, Sun Chuan-Hung
Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan.
School of Medicine, Tzu Chi University, Hualien 970374, Taiwan.
Int J Mol Sci. 2025 Jul 13;26(14):6720. doi: 10.3390/ijms26146720.
Aminoglycoside antibiotics are critical in clinical use for treating severe infections, but they can occasionally cause irreversible sensorineural hearing loss. To establish a rational pathway for otoprotectant discovery, we provide an integrated, three-tier methodology-comprising cell-model selection, transcriptomic analysis, and a gentamicin-Texas Red (GTTR) uptake assay-to guide the development of otoprotective strategies. We first utilized two murine auditory cell lines-UB/OC-2 and HEI-OC1. We focused on TMC1 and OCT2 and further explored the underlying mechanisms of ototoxicity. UB/OC-2 exhibited a higher sensitivity to gentamicin, which correlated with elevated OCT2 expression confirmed via RT-PCR and Western blot. Transcriptomic analysis revealed upregulation of PI3K-Akt, calcium, and GPCR-related stress pathways in gentamicin-treated HEI-OC1 cells. Protein-level analysis further confirmed that gentamicin suppressed phosphorylated Akt while upregulating ER stress markers (GRP78, CHOP) and apoptotic proteins (cleaved caspase 3, PARP). Co-treatment with PI3K inhibitors (LY294002, wortmannin) further suppressed Akt phosphorylation, supporting the role of PI3K-Akt signaling in auditory cells. To visualize drug entry, we used GTTR to evaluate its applicability as a fluorescence-based uptake assay in these cell lines, which were previously employed mainly in cochlear explants. Sodium thiosulfate (STS) and -acetylcysteine (NAC) significantly decreased GTTR uptake, suggesting a protective effect against gentamicin-induced hair cell damage. In conclusion, our findings showed a complex ototoxic cascade involving OCT2- and TMC1-mediated drug uptake, calcium imbalance, ER stress, and disruption of PI3K-Akt survival signaling. We believe that UB/OC-2 cells serve as a practical in vitro model for mechanistic investigations and screening of otoprotective compounds. Additionally, GTTR may be a simple, effective method for evaluating protective interventions in auditory cell lines. Overall, this study provides molecular-level insights into aminoglycoside-induced ototoxicity and introduces a platform for protective strategies.
氨基糖苷类抗生素在治疗严重感染的临床应用中至关重要,但它们偶尔会导致不可逆的感音神经性听力损失。为了建立一条合理的耳保护剂发现途径,我们提供了一种综合的三层方法,包括细胞模型选择、转录组分析和庆大霉素-德克萨斯红(GTTR)摄取试验,以指导耳保护策略的开发。我们首先利用了两种小鼠听觉细胞系——UB/OC-2和HEI-OC1。我们聚焦于TMC1和OCT2,并进一步探索耳毒性的潜在机制。UB/OC-2对庆大霉素表现出更高的敏感性,这与通过RT-PCR和蛋白质印迹法确认的OCT2表达升高相关。转录组分析显示,在庆大霉素处理的HEI-OC1细胞中,PI3K-Akt、钙和GPCR相关的应激途径上调。蛋白质水平分析进一步证实,庆大霉素抑制磷酸化的Akt,同时上调内质网应激标志物(GRP78、CHOP)和凋亡蛋白(裂解的半胱天冬酶3、PARP)。用PI3K抑制剂(LY294002、渥曼青霉素)共同处理进一步抑制了Akt磷酸化,支持PI3K-Akt信号在听觉细胞中的作用。为了可视化药物进入,我们使用GTTR评估其作为基于荧光的摄取试验在这些细胞系中的适用性,这些细胞系以前主要用于耳蜗外植体。硫代硫酸钠(STS)和N-乙酰半胱氨酸(NAC)显著降低GTTR摄取,表明对庆大霉素诱导的毛细胞损伤有保护作用。总之,我们的研究结果显示了一个复杂的耳毒性级联反应,涉及OCT2和TMC1介导的药物摄取、钙失衡、内质网应激以及PI3K-Akt生存信号的破坏。我们认为UB/OC-2细胞可作为进行机制研究和筛选耳保护化合物的实用体外模型。此外,GTTR可能是评估听觉细胞系中保护干预措施的一种简单有效的方法。总体而言,本研究提供了关于氨基糖苷类诱导耳毒性分子水平的见解,并引入了一个保护策略平台。