Ferrara Bill T, Thompson Elinor P, Roviello Giovanni N, Gale Thomas F
School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
CNR Institute of Biostructures and Bioimaging, Via Tommaso De Amicis 95, 80145 Naples, Italy.
Int J Mol Sci. 2025 Jul 15;26(14):6761. doi: 10.3390/ijms26146761.
The recent global coronavirus pandemic highlighted the ever-present threat of respiratory virus outbreaks and the consequent need for ongoing research into antiviral therapy. To this end, structural analogues of the guanidinium-based drug camostat mesylate have been synthesised to probe their potential inhibition of Transmembrane Serine Protease 2 (TMPRSS2), a human protease that is essential for infection by many respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Our in vitro fluorescence-based protease assays and supporting computational docking studies suggest that C-terminal camostat analogues retain TMPRSS2 inhibition potencies (IC = 1-3 nM, BE = -6.6 to -7.0 kcal/mol) that match or exceed that of the parent drug. Analogues and emerge as lead candidates in this regard, thereby validating the rationale behind C-terminal structural modifications and highlighting these derivatives as promising scaffolds for the future development of targeted antiviral therapeutics. Replacement of camostat's ester functionality with peptide linkages largely preserves non-covalent binding but disrupts in vitro protease inhibition, findings consistent with the parent drug's known role as an acylating suicide inhibitor. Docking studies confirm that the replacement of aromatic residues with flexible, equivalent-length alkyl chains is detrimental to drug binding. These function and binding data offer new directions for the synthesis of further analogues of camostat and of other guanidinium-based protease inhibitors that have yet to be refined via structure-activity relationship studies. Further investigation will support tailoring this class of drugs for repurposing in antiviral therapy.
近期的全球冠状病毒大流行凸显了呼吸道病毒爆发的持续威胁以及对抗病毒疗法进行持续研究的必要性。为此,已合成了基于胍盐的药物甲磺酸卡莫司他的结构类似物,以探究其对跨膜丝氨酸蛋白酶2(TMPRSS2)的潜在抑制作用。TMPRSS2是一种人类蛋白酶,对包括严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在内的许多呼吸道病毒的感染至关重要。我们基于荧光的体外蛋白酶测定和支持性的计算对接研究表明,C端卡莫司他类似物保留了TMPRSS2抑制效力(IC = 1 - 3 nM,结合能 = -6.6至-7.0 kcal/mol),与母体药物相当或更高。在这方面,类似物 和 成为主要候选物,从而验证了C端结构修饰背后的原理,并突出了这些衍生物作为未来靶向抗病毒治疗药物开发的有前景的支架。用肽键取代卡莫司他的酯官能团在很大程度上保留了非共价结合,但破坏了体外蛋白酶抑制作用,这一发现与母体药物作为酰化自杀抑制剂的已知作用一致。对接研究证实,用柔性、等长的烷基链取代芳香族残基对药物结合不利。这些功能和结合数据为合成卡莫司他以及其他尚未通过构效关系研究进行优化的基于胍盐的蛋白酶抑制剂的进一步类似物提供了新方向。进一步的研究将支持调整这类药物以用于抗病毒治疗的重新用途。