SantaLucia Daniel J, Devkota Laxmi, Lindeman Sergey V, Ozarowski Andrew, Krzystek J, Ozerov Mykhaylo, Greer Samuel M, Cummins Daniel C, Theopold Klaus H, Atanasov Mihail, Telser Joshua, Fiedler Adam T
Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr, North Rhine-Westphalia D-45470, Germany.
Department of Chemistry, Marquette University, 1414 W Clybourn Street, Milwaukee, Wisconsin 53233, United States.
Inorg Chem. 2025 Aug 11;64(31):16135-16151. doi: 10.1021/acs.inorgchem.5c02691. Epub 2025 Jul 28.
Ferrous ions in four-coordinate environments are common in protein structures, synthetic catalysts, and molecular magnets. The 3 configuration of high-spin Fe(II) imparts an = 2 ground state, whose analysis using conventional spectroscopic methods is often hindered by substantial zero-field splitting (ZFS). Herein, we provide detailed electronic-structure descriptions for [FeX(Tp)] (; X = F, Cl, Br, I), where (Tp) is hydrotris(3--butyl-5-methyl-pyrazol-1-yl)borate. The three pyrazolyl N-donors of the "scorpionate" ligand facially coordinate to Fe(II), giving idealized symmetry with the halide occupying the axial position. Although originally reported by Theopold and co-workers, this series is revisited herein using advanced experimental and theoretical tools. Ground-state transitions were probed by high-frequency and -field electron paramagnetic resonance (HFEPR) and far-infrared magnetic spectroscopy (FIRMS). Variable-temperature/-field (VTVH) Fe Mössbauer spectroscopy, paramagnetic susceptibility, and VTVH reduced magnetization were also utilized. This combined approach provided complete sets of spin-Hamiltonian parameters. Interpretation using ab initio multiconfigurational calculations enabled quantification of halide-dependent magnetoelectronic effects. Jahn-Teller distortions induce a descent in symmetry from to in both solution and solid state. Finally, we demonstrate that the series is ionic, with the ZFS arising from combined Jahn-Teller and ligand field effects, rather than intrinsic spin-orbit coupling from the halides.
在蛋白质结构、合成催化剂和分子磁体中,四配位环境中的亚铁离子很常见。高自旋Fe(II)的³ 构型赋予了一个S = 2的基态,使用传统光谱方法对其进行分析时,常常会受到显著的零场分裂(ZFS)的阻碍。在此,我们提供了[FeX(Tp)](X = F、Cl、Br、I)的详细电子结构描述,其中(Tp)是氢三(3 - 叔丁基 - 5 - 甲基 - 吡唑 - 1 - 基)硼酸酯。“螯合”配体的三个吡唑基N供体与Fe(II)呈面式配位,形成理想化的 对称结构,卤化物占据轴向位置。尽管该系列最初由Theopold及其同事报道,但本文使用先进的实验和理论工具对其进行了重新研究。通过高频和高场电子顺磁共振(HFEPR)以及远红外磁光谱(FIRMS)探测基态跃迁。还利用了变温/变场(VTVH)Fe穆斯堡尔光谱、顺磁磁化率和VTVH还原磁化强度。这种综合方法提供了完整的自旋哈密顿参数集。使用从头算多组态计算进行解释能够量化卤化物依赖性磁电子效应。 Jahn - Teller畸变在溶液和固态中都会导致对称性从 降至 。最后,我们证明该系列是离子性的,ZFS源于Jahn - Teller效应和配体场效应的共同作用,而非卤化物的固有自旋 - 轨道耦合。