Suppr超能文献

四面体结构、自旋量子数S = 2的[Fe{(EPPr)N}](E = S,Se)配合物的电子结构:高频和高场电子顺磁共振、Fe穆斯堡尔光谱及量子化学研究

Electronic Structure of Tetrahedral, = 2, [Fe{(EPPr)N}], E = S, Se, Complexes: Investigation by High-Frequency and -Field Electron Paramagnetic Resonance, Fe Mössbauer Spectroscopy, and Quantum Chemical Studies.

作者信息

Stoian Sebastian A, Moshari Mahsa, Ferentinos Eleftherios, Grigoropoulos Alexios, Krzystek J, Telser Joshua, Kyritsis Panayotis

机构信息

Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States.

Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece.

出版信息

Inorg Chem. 2021 Aug 2;60(15):10990-11005. doi: 10.1021/acs.inorgchem.1c00670. Epub 2021 Jul 21.

Abstract

In this work, we assessed the electronic structures of two pseudotetrahedral complexes of Fe, [Fe{(SPPr)N}] ) and [Fe{(SePPr)N}] (), using high-frequency and -field EPR (HFEPR) and field-dependent Fe Mössbauer spectroscopies. This investigation revealed = 2 ground states characterized by moderate, negative zero-field splitting (zfs) parameters . The crystal-field (CF) theory analysis of the spin Hamiltonian (sH) and hyperfine structure parameters revealed that the orbital ground states of and have a predominant d character, which is admixed with d (∼10%). Although replacing the S-containing ligands of by their Se-containing analogues in leads to a smaller || value, our theoretical analysis, which relied on extensive CASSCF calculations, suggests that the ligand spin-orbit coupling (SOC) plays a marginal role in determining the magnetic anisotropy of these compounds. Instead, the d → d excitations yield a large negative contribution, which dominates the zfs of both and , while the different energies of the d → d transitions are the predominant factor responsible for the difference in zfs between and . The electronic structures of these compounds are contrasted with those of other [FeS] sites, including reduced rubredoxin by considering a -type distortion of the [Fe(E-X)] cores, where E = S, Se; X = C, P. Our combined CASSCF/DFT calculations indicate that while the character of the orbital ground state and the quintet excited states' contribution to the zfs of and are modulated by the magnitude of the distortion, this structural change does not impact the contribution of the excited triplet states.

摘要

在这项工作中,我们使用高频和高场电子顺磁共振(HFEPR)以及场依赖的铁穆斯堡尔光谱,评估了铁的两种假四面体配合物[Fe{(SPPr)N}]和[Fe{(SePPr)N}]的电子结构。该研究揭示了具有中等负零场分裂(zfs)参数的(S = 2)基态。对自旋哈密顿量((sH))和超精细结构参数的晶体场(CF)理论分析表明,([Fe{(SPPr)N}])和([Fe{(SePPr)N}])的轨道基态具有主要的(d)特征,并与(d)(约10%)混合。尽管在([Fe{(SePPr)N}])中用含硒类似物取代([Fe{(SPPr)N}])中的含硫配体会导致(\vert D\vert)值变小,但我们基于广泛的完全活化空间自洽场(CASSCF)计算的理论分析表明,配体自旋 - 轨道耦合(SOC)在确定这些化合物的磁各向异性中起次要作用。相反,(d_{xz}\to d_{yz})激发产生了很大的负贡献,这主导了([Fe{(SPPr)N}])和([Fe{(SePPr)N}])的零场分裂,而(d_{xz}\to d_{yz})跃迁的不同能量是导致([Fe{(SPPr)N}])和([Fe{(SePPr)N}])零场分裂差异的主要因素。通过考虑([Fe(E - X)])核的(\eta)型畸变,将这些化合物的电子结构与其他[FeS]位点的电子结构进行了对比,其中(E = S),(Se);(X = C),(P)。我们结合的CASSCF/DFT计算表明,虽然轨道基态的特征以及五重态激发态对([Fe{(SPPr)N}])和([Fe{(SePPr)N}])零场分裂的贡献受(\eta)畸变大小的调制,但这种结构变化不会影响激发三重态的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验