Suppr超能文献

基于线场共聚焦光学相干断层扫描与共聚焦拉曼显微光谱联用的人工智能辅助非黑色素瘤皮肤癌结构识别

AI-assisted identification of nonmelanoma skin cancer structures based on combined line-field confocal optical coherence tomography and confocal Raman microspectroscopy.

作者信息

Ayadh Meriem, Waszczuk Léna, Ogien Jonas, Dauce Grégoire, Augis Luc, Tfaili Sana, Tfayli Ali, Perrot Jean-Luc, Dubois Arnaud

机构信息

Dermatologie CHU Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes UMR CNRS 5513, Saint-Etienne, France.

Damae Medical, Paris, France.

出版信息

J Biomed Opt. 2025 Jul;30(7):076008. doi: 10.1117/1.JBO.30.7.076008. Epub 2025 Jul 28.

Abstract

SIGNIFICANCE

Morpho-chemical characterization of skin cancers provides valuable insights for early diagnosis, classification, and treatment response assessment.

AIM

We introduce a compact, noninvasive system combining high-resolution morphological imaging and chemical characterization of skin tissues. The system integrates line-field confocal optical coherence tomography for cellular-level imaging and confocal Raman microspectroscopy to analyze the chemical composition of specific targets identified within the morphological images.

APPROACH

We present results obtained from the system installed in a clinical setting over the course of 1 year. More than 330 nonmelanoma skin cancer specimens were imaged , with different structures targeted for Raman microspectroscopy, resulting in over 1300 spectral acquisitions. To evaluate the system's ability to accurately identify cancerous structures, an artificial intelligence model was trained on the spectral data.

RESULTS

The model demonstrated high classification performance, achieving an area under the ROC curve of 0.95 for basal cell carcinoma structures and 0.92 when including structures from both basal and squamous cell carcinomas.

CONCLUSIONS

Spectral attention scores derived from Raman data revealed key chemical differences among the various cancerous structures, offering deeper insights into their composition.

摘要

意义

皮肤癌的形态化学特征为早期诊断、分类和治疗反应评估提供了有价值的见解。

目的

我们引入了一种紧凑的、非侵入性系统,该系统结合了皮肤组织的高分辨率形态成像和化学特征分析。该系统集成了用于细胞水平成像的线场共聚焦光学相干断层扫描和共聚焦拉曼显微光谱,以分析在形态图像中识别出的特定目标的化学成分。

方法

我们展示了在临床环境中安装的该系统在1年的时间里所获得的结果。对超过330个非黑色素瘤皮肤癌标本进行了成像,针对不同结构进行拉曼显微光谱分析,共获得了超过1300次光谱采集。为了评估该系统准确识别癌性结构的能力,基于光谱数据训练了一个人工智能模型。

结果

该模型表现出较高的分类性能,对于基底细胞癌结构,受试者工作特征曲线下面积达到0.95;当包括基底细胞癌和鳞状细胞癌的结构时,该面积为0.92。

结论

从拉曼数据得出的光谱关注分数揭示了各种癌性结构之间的关键化学差异,为其成分提供了更深入见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d94e/12302994/c1899bd836d1/JBO-030-076008-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验