Suppr超能文献

多波长拉曼区分恶性皮肤肿瘤。

Multi-Wavelength Raman Differentiation of Malignant Skin Neoplasms.

机构信息

Lebedev Physical Institute, 119991 Moscow, Russia.

Semashko National Research Institute of Public Health, 105064 Moscow, Russia.

出版信息

Int J Mol Sci. 2024 Jul 6;25(13):7422. doi: 10.3390/ijms25137422.

Abstract

Raman microspectroscopy has become an effective method for analyzing the molecular appearance of biomarkers in skin tissue. For the first time, we acquired in vitro Raman spectra of healthy and malignant skin tissues, including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), at 532 and 785 nm laser excitation wavelengths in the wavenumber ranges of 900-1800 cm and 2800-3100 cm and analyzed them to find spectral features for differentiation between the three classes of the samples. The intensity ratios of the bands at 1268, 1336, and 1445 cm appeared to be the most reliable criteria for the three-class differentiation at 532 nm excitation, whereas the bands from the higher wavenumber region (2850, 2880, and 2930 cm) were a robust measure of the increased protein/lipid ratio in the tumors at both excitation wavelengths. Selecting ratios of the three bands from the merged (532 + 785) dataset made it possible to increase the accuracy to 87% for the three classes and reach the specificities for BCC + SCC equal to 87% and 81% for the sensitivities of 95% and 99%, respectively. Development of multi-wavelength excitation Raman spectroscopic techniques provides a versatile non-invasive tool for research of the processes in malignant skin tumors, as well as other forms of cancer.

摘要

拉曼微光谱分析已成为分析皮肤组织中生物标志物分子外观的有效方法。我们首次在 532nm 和 785nm 激光激发波长下,在 900-1800cm 和 2800-3100cm 的波数范围内,获得了健康和恶性皮肤组织(包括基底细胞癌(BCC)和鳞状细胞癌(SCC))的体外拉曼光谱,并对其进行了分析,以找到区分三类样本的光谱特征。在 532nm 激发下,1268、1336 和 1445cm 处的带的强度比似乎是三类区分的最可靠标准,而来自较高波数区域(2850、2880 和 2930cm)的带则是两个激发波长下肿瘤中蛋白质/脂质比增加的有力指标。选择来自合并(532+785)数据集的三个波段的比值,可以将三类的准确性提高到 87%,并达到 87%的 BCC+SCC 特异性,以及分别为 95%和 99%的敏感性。多波长激发拉曼光谱技术的发展为研究恶性皮肤肿瘤以及其他形式的癌症中的过程提供了一种多功能的非侵入性工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b595/11242141/0201d690e580/ijms-25-07422-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验