文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过网络药理学和分子对接探索伊曲康唑联合利托那韦治疗感染的作用机制。

Exploring the therapeutic mechanism of itraconazole combined with ritonavir on infection through network pharmacology and molecular docking.

作者信息

Feng Yiyang, Feng Wenli, Yang Jing, Ma Yan

机构信息

Department of Dermatovenereology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.

出版信息

Front Pharmacol. 2025 Jul 14;16:1578749. doi: 10.3389/fphar.2025.1578749. eCollection 2025.


DOI:10.3389/fphar.2025.1578749
PMID:40727105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12301349/
Abstract

BACKGROUND: Autophagy induced by itraconazole and ritonavir was found involved in the pathogenesis of . This study was designed to explore the possible molecular mechanism of itraconazole and ritonavir in the treatment of infection through autophagy pathway. METHODS: The overlapping targets of itraconazole and ritonavir, and those-related to and autophagy were screened. Then the core targets were identified by protein-protein interaction (PPI) network analysis. Gene enrichment analysis of targets and the drug-target-pathway-disease network was constructed. The interactions between itraconazole, ritonavir and core targets were analyzed by molecular docking and molecular dynamics simulation. Finally, the core target-miRNA interaction network was constructed to predict candidate miRNAs. RESULTS: PPI network showed that PIK3R1, RELA, STAT3, HSP90AA1, TP53, JUN, GRB2, EGFR, ESR1 and TNF were potential core targets of autophagy therapy for infection with itraconazole and ritonavir. Enrichment analysis showed that the two drugs may regulate the autophagy process through pathways including PI3K-AKT, IL-17, MAPK, Toll-like receptor, JAK-STAT and NF-κB. Molecular docking analysis indicated that itraconazole and ritonavir possess strong binding affinities with the cote target proteins, with binding free energies ranging from -5.6 to -9.5 kcal/mol. Key interactions were identified at the active sites of the targets, suggesting stable ligand-receptor complex formation. Itraconazole docked to PIK3R1 through SER-78 and GLU-82 (-9.3 kcal/mol), and ritonavir docked to PIK3R1 through ASN-85, GLU-1011 and arginine (ARG)-1088 (-7.7 kcal/mol). Molecular dynamics simulation of itraconazole and ritonavir with representative target genes lasted for 100 ns showed the structures of the formed complexes remained stable throughout. Finally, the candidate miRNAs including miR-486-5p, miR-411-5p.1 and miR-296-5p were identified. CONCLUSION: Network pharmacological analysis showed a multi-target and multi-pathway molecular mechanism of itraconazole and ritonavir in the treatment of infection, and provided a theoretical basis for subsequent studies.

摘要

背景:发现伊曲康唑和利托那韦诱导的自噬参与了……的发病机制。本研究旨在探讨伊曲康唑和利托那韦通过自噬途径治疗……感染的可能分子机制。 方法:筛选伊曲康唑和利托那韦的重叠靶点以及与……和自噬相关的靶点。然后通过蛋白质-蛋白质相互作用(PPI)网络分析确定核心靶点。对靶点进行基因富集分析并构建药物-靶点-途径-疾病网络。通过分子对接和分子动力学模拟分析伊曲康唑、利托那韦与核心靶点之间的相互作用。最后,构建核心靶点-微小RNA相互作用网络以预测候选微小RNA。 结果:PPI网络显示,PIK3R1、RELA、STAT3、HSP90AA1、TP53、JUN、GRB2、EGFR、ESR1和TNF是伊曲康唑和利托那韦治疗……感染的自噬疗法潜在核心靶点。富集分析表明,这两种药物可能通过PI3K-AKT、IL-17、MAPK、Toll样受体、JAK-STAT和NF-κB等途径调节自噬过程。分子对接分析表明,伊曲康唑和利托那韦与核心靶点蛋白具有很强的结合亲和力,结合自由能范围为-5.6至-9.5千卡/摩尔。在靶点的活性位点鉴定出关键相互作用,表明形成了稳定的配体-受体复合物。伊曲康唑通过SER-78和GLU-82与PIK3R1对接(-9.3千卡/摩尔),利托那韦通过ASN-85、GLU-1011和精氨酸(ARG)-1088与PIK3R1对接(-7.7千卡/摩尔)。伊曲康唑和利托那韦与代表性靶基因的分子动力学模拟持续100纳秒,结果表明形成的复合物结构在整个过程中保持稳定。最后,鉴定出候选微小RNA,包括miR-486-5p、miR-411-5p.1和miR-296-5p。 结论:网络药理学分析显示了伊曲康唑和利托那韦治疗……感染的多靶点、多途径分子机制,为后续研究提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/b0b202162565/fphar-16-1578749-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/07519299b2ce/fphar-16-1578749-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/080b4db51292/fphar-16-1578749-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/9c9bf6452a84/fphar-16-1578749-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/5293df969d29/fphar-16-1578749-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/d39684c2679b/fphar-16-1578749-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/9cb7a02b9d1d/fphar-16-1578749-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/b0b202162565/fphar-16-1578749-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/07519299b2ce/fphar-16-1578749-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/080b4db51292/fphar-16-1578749-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/9c9bf6452a84/fphar-16-1578749-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/5293df969d29/fphar-16-1578749-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/d39684c2679b/fphar-16-1578749-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/9cb7a02b9d1d/fphar-16-1578749-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e3/12301349/b0b202162565/fphar-16-1578749-g007.jpg

相似文献

[1]
Exploring the therapeutic mechanism of itraconazole combined with ritonavir on infection through network pharmacology and molecular docking.

Front Pharmacol. 2025-7-14

[2]
Elucidating the Mechanism of Xiaoqinglong Decoction in Chronic Urticaria Treatment: An Integrated Approach of Network Pharmacology, Bioinformatics Analysis, Molecular Docking, and Molecular Dynamics Simulations.

Curr Comput Aided Drug Des. 2025-7-16

[3]
Understanding mechanisms of -derived exosome-like nanoparticles against breast cancer through an integrated metabolomics and network pharmacology analysis.

Front Chem. 2025-6-6

[4]
Study on the mechanism of Shujin Tongluo granules in treating cervical spondylosis based on network pharmacology and molecular docking.

Medicine (Baltimore). 2023-7-21

[5]
Multi-Target Mechanisms of Si-Ni-San on Anxious Insomnia: An Example of Network-pharmacology and Molecular Docking Analysis.

Curr Med Chem. 2024-10-9

[6]
Mechanism of Keke tablets in treating post-infectious cough following influenza A virus infection based on network pharmacology, molecular docking, molecular dynamics and in vivo experiments.

Int Immunopharmacol. 2025-6-25

[7]
Exploring the Molecular Targets and Therapeutic Potential of Coptisine in Colon Cancer: A Network Pharmacology Approach.

Curr Med Chem. 2025

[8]
Investigation of the effect and mechanism of Fei Re Pu Qing powder in treating acute lung injury (ALI) by modulating macrophage polarization via serum pharmacology and network pharmacology.

J Ethnopharmacol. 2025-7-24

[9]
Network pharmacology and molecular docking reveal that honeysuckle blood components mitigate smoke inhalation-induced lung injury via NF-κB pathway.

Allergol Immunopathol (Madr). 2025-7-1

[10]
Revealing the Multi-Target Mechanisms of Fespixon Cream in Diabetic Foot Ulcer Healing: Integrated Network Pharmacology, Molecular Docking, and Clinical RT-qPCR Validation.

Curr Issues Mol Biol. 2025-6-25

本文引用的文献

[1]
Exploring the mechanisms and targets of proton pump inhibitors-induced osteoporosis through network toxicology, molecular docking, and molecular dynamics simulations.

Front Pharmacol. 2025-5-12

[2]
Regulation of Ergosterol Biosynthesis in Pathogenic Fungi: Opportunities for Therapeutic Development.

Microorganisms. 2025-4-10

[3]
Regulatory networks of mRNAs and miRNAs involved in the immune response of diamondback moth, Plutella xylostella to fungal infection.

BMC Genomics. 2025-1-7

[4]
Exosomes derived from umbilical cord-derived mesenchymal stem cells exposed to diabetic microenvironment enhance M2 macrophage polarization and protect against diabetic nephropathy.

FASEB J. 2024-7-31

[5]
AlphaFold2 structures guide prospective ligand discovery.

Science. 2024-6-21

[6]
JD-02, a novel Hsp90 inhibitor, induces ROS/SRC axis-dependent cytoprotective autophagy in colorectal cancer cells.

Mol Carcinog. 2024-6

[7]
analysis unravels the promising anticariogenic efficacy of fatty acids against dental caries causing .

J Biomol Struct Dyn. 2025-2

[8]
MicroRNAs in infectious diseases: potential diagnostic biomarkers and therapeutic targets.

Clin Microbiol Rev. 2023-12-20

[9]
Network pharmacology approaches for research of Traditional Chinese Medicines.

Chin J Nat Med. 2023-5

[10]
The STAT3-Regulated Autophagy Pathway in Glioblastoma.

Pharmaceuticals (Basel). 2023-4-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索