Suppr超能文献

网络药理学方法在中药研究中的应用。

Network pharmacology approaches for research of Traditional Chinese Medicines.

机构信息

School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 311399, China; Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-based Chinese Medicine, Hangzhou 310058, China.

Department of Chinese Medicine Science & Engineering, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

出版信息

Chin J Nat Med. 2023 May;21(5):323-332. doi: 10.1016/S1875-5364(23)60429-7.

Abstract

Pharmacodynamics material basis and effective mechanisms are the two main issues to decipher the mechnisms of action of Traditional Chinese medicines (TCMs) for the treatment of diseases. TCMs, in "multi-component, multi-target, multi-pathway" paradigm, show satisfactory clinical results in complex diseases. New ideas and methods are urgently needed to explain the complex interactions between TCMs and diseases. Network pharmacology (NP) provides a novel paradigm to uncover and visualize the underlying interaction networks of TCMs against multifactorial diseases. The development and application of NP has promoted the safety, efficacy, and mechanism investigations of TCMs, which then reinforces the credibility and popularity of TCMs. The current organ-centricity of medicine and the "one disease-one target-one drug" dogma obstruct the understanding of complex diseases and the development of effective drugs. Therefore, more attentions should be paid to shift from "phenotype and symptom" to "endotype and cause" in understanding and redefining current diseases. In the past two decades, with the advent of advanced and intelligent technologies (such as metabolomics, proteomics, transcriptomics, single-cell omics, and artificial intelligence), NP has been improved and deeply implemented, and presented its great value and potential as the next drug-discovery paradigm. NP is developed to cure causal mechanisms instead of treating symptoms. This review briefly summarizes the recent research progress on NP application in TCMs for efficacy research, mechanism elucidation, target prediction, safety evaluation, drug repurposing, and drug design.

摘要

中药治疗疾病作用机制的药效物质基础和有效作用机制是阐释其作用机制的两个主要问题。中药在“多成分、多靶点、多途径”的范式下,在复杂疾病的治疗中显示出满意的临床疗效。需要新的思路和方法来解释中药与疾病之间的复杂相互作用。网络药理学(NP)提供了一种新的范式,可以揭示和可视化中药针对多因素疾病的潜在相互作用网络。NP 的发展和应用促进了中药的安全性、有效性和机制研究,从而增强了中药的可信度和普及度。当前以器官为中心的医学和“一病一靶一药”的教条阻碍了对复杂疾病的理解和有效药物的开发。因此,应该更加关注从“表型和症状”向“内型和病因”转变,以理解和重新定义当前的疾病。在过去的二十年中,随着先进和智能技术(如代谢组学、蛋白质组学、转录组学、单细胞组学和人工智能)的出现,NP 得到了改进和深入实施,并展现出作为下一代药物发现范式的巨大价值和潜力。NP 的发展是为了治疗病因机制,而不是治疗症状。本文简要总结了 NP 在中药疗效研究、作用机制阐明、靶点预测、安全性评价、药物再利用和药物设计中的应用的最新研究进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验