Laroche Fabien, Ehlers Bodil
UMR DYNAFOR, Université de Toulouse, INRAE, Castanet-Tolosan 31326, France.
Department of Ecoscience, Aarhus Universitet, Aarhus C. 8000, Denmark.
R Soc Open Sci. 2025 Jul 16;12(7):241375. doi: 10.1098/rsos.241375. eCollection 2025 Jul.
Inferring assembly processes from species co-occurrence data is a long-standing challenge in community ecology. Approaches that focus on detecting non-random spatial covariance between species occurrences are limited by the fact that spatial patterns can deviate from randomness for many reasons. Process-based null hypotheses are needed to overcome this limitation. Here, we explored the neutral theory of community ecology as a promising candidate. We built upon a robust property of neutral co-occurrences, the 'rank consistency': within a common regional pool, the presence probabilities of two species should be ordered similarly across local sites. We suggested performing pairwise tests of species rank consistency along ecological gradients of interest and creating a species network where rank-consistent species are connected. Network mo-dules then indicate species groups that do not co-occur neutrally with one another, hence making an important step towards the understanding of assembly processes. These modules can be further interpreted by relating their composition to species traits. We tested our framework on virtual data and successfully retrieved pre-defined functional groups without generating false positive detections. Then, we analysed two published examples on tropical trees and Mediterranean herbaceous communities. We found ecologically meaningful modules in both cases, hence illustrating the potential of our approach.
从物种共现数据推断群落构建过程是群落生态学中一个长期存在的挑战。专注于检测物种出现之间非随机空间协方差的方法存在局限性,因为空间模式可能由于多种原因偏离随机性。需要基于过程的零假设来克服这一局限性。在此,我们探索了群落生态学的中性理论,认为它是一个有潜力的候选理论。我们基于中性共现的一个强大属性——“秩一致性”展开研究:在一个共同的区域库中,两个物种的存在概率在各个局部地点应具有相似的排序。我们建议沿着感兴趣的生态梯度对物种秩一致性进行成对检验,并创建一个连接秩一致物种的物种网络。网络模块随后指示出彼此并非中性共现的物种组,从而朝着理解群落构建过程迈出重要一步。通过将这些模块的组成与物种特征相关联,可以对其进行进一步解读。我们在虚拟数据上测试了我们的框架,并成功检索到预定义的功能组,且未产生误报。然后,我们分析了两个已发表的关于热带树木和地中海草本群落的例子。我们在这两个案例中都发现了具有生态意义的模块,从而说明了我们方法的潜力。