Pupulewatte Heshani, Gorbunov Maxim Y, Moore C Mark, Selden Corday R, Ryan-Keogh Thomas J, Furby Joe, Hawley Ruth, Lohan Maeve C, Bibby Thomas S, Falkowski Paul G
Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854.
Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2511916122. doi: 10.1073/pnas.2511916122. Epub 2025 Jul 29.
Oxygenic photosynthesis requires excitation energy transfer from light-harvesting complexes (LHCs) to reaction centers (RCs) to drive photochemical redox chemistry. The effective absorption cross section of RCs dynamically responds to the light environment on time scales of seconds to days, allowing rapid acclimations to changes in spectral irradiance and photoprotection under high light, thereby optimizing light absorption for photochemistry. Although energy coupling between LHC-RCs has been studied for decades in laboratory cultures, it remains poorly understood in real-world conditions, where it is potentially influenced by nutrients. In the oceans, one of the most critical micronutrients for photosynthesis is iron (Fe). To investigate the effects of Fe stress on the energetic coupling between LHC-RCs in natural phytoplankton assemblages in the Southern Atlantic Ocean, we assessed photophysiological responses using a pair of custom-built fluorometers measuring chlorophyll-a variable fluorescence and picosecond fluorescence lifetimes. Detailed analysis based on the functional absorption cross section of the oxygen-evolving complex, quantum yield of photochemistry, energetic connectivity of RCs, and the average lifetime of in vivo chlorophyll fluorescence suggested that between 10 and 25% of LHCs remain uncoupled from RCs and do not effectively contribute to photochemical charge separation. Addition of Fe to samples under trace metal-clean on-board incubations indicates relatively rapid recoupling (< 24 h) of antennae to photochemistry, followed by biophysical stabilization of recoupled complexes. Our findings highlight the crucial role of micronutrients in controlling the excitation energy transfer from LHCs to RCs in marine phytoplankton and the overall primary productivity in the real-world oceans.
光合放氧作用需要激发能从光捕获复合体(LHCs)传递到反应中心(RCs),以驱动光化学氧化还原反应。反应中心的有效吸收截面在数秒到数天的时间尺度上动态响应光照环境,从而能够在高光条件下快速适应光谱辐照度的变化并实现光保护,进而优化光化学的光吸收。尽管在实验室培养中对LHC-RC之间的能量耦合已经研究了数十年,但在实际环境中仍知之甚少,因为在实际环境中它可能受到营养物质的影响。在海洋中,光合作用最关键的微量营养元素之一是铁(Fe)。为了研究铁胁迫对南大西洋天然浮游植物群落中LHC-RC之间能量耦合的影响,我们使用一对定制的荧光计测量叶绿素a可变荧光和皮秒荧光寿命,评估了光生理响应。基于放氧复合体的功能吸收截面、光化学量子产率、反应中心的能量连接性以及体内叶绿素荧光的平均寿命进行的详细分析表明,10%至25%的LHC与反应中心未耦合,不能有效地促进光化学电荷分离。在痕量金属清洁的船上培养条件下向样品中添加铁,表明天线与光化学的重新耦合相对较快(<24小时),随后重新耦合的复合体实现生物物理稳定。我们的研究结果突出了微量营养元素在控制海洋浮游植物中从LHC到RC的激发能转移以及现实世界海洋中整体初级生产力方面的关键作用。