Suppr超能文献

异常的溶酶体动力学通过mTORC1信号通路破坏X连锁肌管性肌病中的肌生成。

Aberrant lysosomal dynamics disrupt myogenesis via mTORC1 signalling in X-linked myotubular myopathy.

作者信息

Kora Kengo, Yoshida Takeshi, Yokoyama Atsushi, Fujiwara Kei, Yano Naoko, Kayaki Taisei, Kajimoto Satoshi, Nishikawa Kinuko, Sakurai Hidetoshi, Takita Junko

机构信息

Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.

Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.

出版信息

Brain. 2025 Jul 29. doi: 10.1093/brain/awaf278.

Abstract

X-linked myotubular myopathy is a severe congenital muscle disorder caused by pathogenic variants in the MTM1 gene, which encodes the phosphoinositide phosphatase myotubularin. Muscle biopsies from patients with X-linked myotubular myopathy exhibit distinctive histopathological features, including small, rounded myofibres with centrally located nuclei, indicating a developmental defect in muscle maturation. While earlier studies have indicated that myotubularin dysfunction causes dysregulation of mechanistic target of rapamycin complex 1 (mTORC1) signalling, the underlying mechanisms and phenotypic impact on human muscle cells remain poorly understood. Currently, there are no approved therapies available for the treatment of this disorder. In this study, we established an induced pluripotent stem cell-based model of X-linked myotubular myopathy using two pairs of isogenic induced pluripotent stem cells: healthy-control versus MTM1-knockout and patient-derived versus gene-corrected induced pluripotent stem cells. Through MyoD-inducible myogenic differentiation, this model successfully recapitulates the key pathological features of X-linked myotubular myopathy, including elevated phosphatidylinositol-3-phosphate levels, hyperactivation of mTORC1 signalling, and increased expression of integrin-β1 and dynamin 2. We identified impaired lysosomal dynamics as a novel pathogenic mechanism in X-linked myotubular myopathy. Our induced pluripotent stem cell-derived X-linked myotubular myopathy myotubes exhibited an abnormal redistribution of lysosomes, with peripheral accumulation, leading to abnormally activated mTORC1 signalling. FYCO1 knockdown, a key regulator of lysosomal trafficking, ameliorated this hyperactivation of mTORC1 signalling. Comprehensive transcriptome analysis revealed distinct gene expression patterns associated with altered mTORC1 signalling and lysosomal localisation in X-linked myotubular myopathy myotubes. Network analysis suggested the central role of the mTORC1 signalling pathway and its connections to disrupted muscle development and differentiation. To investigate the influence of mTORC1 signalling and myotubularin deficiency on myogenic differentiation, we established two mouse myoblast models: one with constitutively activated mTORC1 signalling and another with Mtm1 knockout. Increased mTORC1 signalling in mouse myoblasts impaired myogenic differentiation, and this impairment was reversed by mTORC1 inhibitor rapamycin. Notably, rapamycin treatment also ameliorated the impaired myogenic differentiation observed in Mtm1-knockout mouse myoblasts, supporting the causative role of mTORC1 hyperactivation in X-linked myotubular myopathy pathogenesis. In conclusion, our findings establish the first human cell model of XLMTM, revealing that myotubularin deficiency leads to impaired lysosomal dynamics, which in turn causes mTORC1 dysregulation, a critical factor in the early stage of myogenic differentiation in X-linked myotubular myopathy. These findings provide new insights into the pathogenesis of X-linked myotubular myopathy and suggest that targeting mTORC1 signalling may be a promising therapeutic strategy for this debilitating disorder.

摘要

X连锁性肌管性肌病是一种严重的先天性肌肉疾病,由MTM1基因的致病性变异引起,该基因编码磷酸肌醇磷酸酶肌管素。X连锁性肌管性肌病患者的肌肉活检显示出独特的组织病理学特征,包括小的、圆形的肌纤维,细胞核位于中央,表明肌肉成熟存在发育缺陷。虽然早期研究表明肌管素功能障碍会导致雷帕霉素复合物1(mTORC1)信号传导失调,但对人类肌肉细胞的潜在机制和表型影响仍知之甚少。目前,尚无批准的疗法可用于治疗这种疾病。在本研究中,我们使用两对同基因诱导多能干细胞建立了基于诱导多能干细胞的X连锁性肌管性肌病模型:健康对照与MTM1基因敲除以及患者来源与基因校正的诱导多能干细胞。通过MyoD诱导的肌源性分化,该模型成功重现了X连锁性肌管性肌病的关键病理特征,包括磷脂酰肌醇-3-磷酸水平升高、mTORC1信号过度激活以及整合素-β1和发动蛋白2表达增加。我们确定溶酶体动力学受损是X连锁性肌管性肌病的一种新的致病机制。我们的诱导多能干细胞衍生的X连锁性肌管性肌病肌管表现出溶酶体的异常重新分布,外周聚集,导致mTORC1信号异常激活。溶酶体运输的关键调节因子FYCO1敲低改善了mTORC1信号的这种过度激活。综合转录组分析揭示了与X连锁性肌管性肌病肌管中mTORC1信号改变和溶酶体定位相关的独特基因表达模式。网络分析表明mTORC1信号通路的核心作用及其与肌肉发育和分化破坏的联系。为了研究mTORC1信号和肌管素缺乏对肌源性分化的影响,我们建立了两种小鼠成肌细胞模型:一种具有组成性激活的mTORC1信号,另一种具有Mtm1基因敲除。小鼠成肌细胞中mTORC1信号增加会损害肌源性分化,mTORC1抑制剂雷帕霉素可逆转这种损害。值得注意的是,雷帕霉素治疗也改善了在Mtm1基因敲除小鼠成肌细胞中观察到的受损肌源性分化,支持mTORC1过度激活在X连锁性肌管性肌病发病机制中的致病作用。总之,我们的研究结果建立了首个XLMTM的人类细胞模型,揭示肌管素缺乏导致溶酶体动力学受损,进而导致mTORC1失调,这是X连锁性肌管性肌病肌源性分化早期的关键因素。这些发现为X连锁性肌管性肌病的发病机制提供了新的见解,并表明靶向mTORC1信号可能是治疗这种使人衰弱疾病的一种有前景的治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验