Liu Matthew J, Fernández Otero Carlos A, Patino Diego Uruchurtu, Gong Huaxin, Hossain Md Delowar, Matthews Jesse E, Williams Kindle S, Vargas Alfred, Zachman Michael J, Hoffman Adam S, Nordlund Dennis, Bajdich Michal, Bare Simon R, Stevens Michaela Burke, Jaramillo Thomas F, Bao Zhenan, Tarpeh William A
Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.
J Am Chem Soc. 2025 Aug 13;147(32):29026-29041. doi: 10.1021/jacs.5c07334. Epub 2025 Jul 29.
An emerging design heuristic for electrochemical nitrate reduction (NORR) catalysts is synthesizing electron-deficient sites to facilitate binding of electron-rich NO. However, this rule has rarely been applied to metal-, nitrogen-doped carbon (MNC) catalysts. Titanium (Ti), with low electronegativity and high NORR reactivity, is a compelling MNC candidate. To date, atomically dispersed TiN motifs have eluded synthesis due to the strong oxophilicity of Ti. Here, we leverage nitrogen-rich carbon flowers (CF) to overcome synthetic challenges and produce Ti-, N-doped carbon flower (TiCF) catalysts. Advanced materials characterization demonstrates that TiCF catalysts are a mixed phase material with 3/4 of Ti atoms in TiO-like nanoparticles and 1/4 of Ti atoms in novel, atomically dispersed TiN sites. TiCF achieves 61 ± 7% NH-selectivity at -0.70 V vs RHE and 14 ± 5 mA/cm to NH formation (||) at -0.85 V vs RHE in (0.1 M NaOH + 0.1 M NaNO + 0.45 M NaSO) electrolyte. Control studies show both CF morphology and Ti sites are essential for high NORR activity. Density functional theory calculations attribute the NORR reactivity to TiN, which facilitates multiple bond formation with surface intermediates to promote favorable NH synthesis pathways. Thus, TiCF exhibits 60× higher || values than bulk Ti and NH yield rates (>0.06 mmol NH/h/cm) that are competitive with state-of-the-art MNC catalysts (e.g., FeNC, CuNC). TiCF introduces a new class of Ti electrocatalysts, advancing the MNC design space and sustainable NH production.
一种用于电化学硝酸盐还原(NORR)催化剂的新兴设计启发式方法是合成缺电子位点,以促进富电子的NO的结合。然而,这一规则很少应用于金属、氮掺杂碳(MNC)催化剂。钛(Ti)具有低电负性和高NORR反应活性,是一种极具吸引力的MNC候选材料。迄今为止,由于Ti的强亲氧性,原子分散的TiN基序一直未能合成出来。在这里,我们利用富氮碳花(CF)来克服合成挑战,并制备出Ti、N掺杂的碳花(TiCF)催化剂。先进的材料表征表明,TiCF催化剂是一种混合相材料,其中3/4的Ti原子存在于类TiO纳米颗粒中,1/4的Ti原子存在于新型的原子分散的TiN位点中。在(0.1 M NaOH + 0.1 M NaNO + 0.45 M NaSO)电解液中,相对于可逆氢电极(RHE),TiCF在-0.70 V时实现了61±7%的NH选择性,在-0.85 V时实现了14±5 mA/cm的NH生成电流密度(||)。对照研究表明,CF形态和Ti位点对于高NORR活性都是必不可少的。密度泛函理论计算将NORR反应活性归因于TiN,它有助于与表面中间体形成多重键,从而促进有利的NH合成途径。因此,TiCF的||值比块状Ti高60倍,NH产率(>0.06 mmol NH/h/cm)与目前最先进的MNC催化剂(如FeNC、CuNC)具有竞争力。TiCF引入了一类新型的Ti电催化剂,拓展了MNC的设计空间并推动了可持续NH生产。