Chen Wu-Ji, Liu Chun-Yan, Mu Yun-Jing, Yin Yi-An, Lin Chang-Gen, Long De-Liang, Cronin Leroy, Song Yu-Fei
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
School of Chemistry, The University of Glasgow, Glasgow G11 6EW, U.K.
J Am Chem Soc. 2025 Aug 13;147(32):28903-28911. doi: 10.1021/jacs.5c06495. Epub 2025 Jul 29.
The rational design of hybrid organic-inorganic rotaxanes is crucial for advancing molecular machines and functional nanomaterials, yet the integration of metal-oxo clusters into interlocked systems remains challenging. Herein, we present a precision synthesis strategy for hybrid rotaxanes combining γ-cyclodextrin (γ-CD) hosts with Anderson-type polyoxometalate (POM)-based guests. This approach utilizes covalent POM modification coupled with strategically anchored organic functionalities to control supramolecular assembly, enabling the construction of -[2]-, [3]-, and [4]rotaxanes with controlled structural variations. Significantly, we achieved the first single-crystal examples of supramolecular -[4]rotaxanes featuring γ-CD dimers threaded by two organo-POM units. A key breakthrough was achieved through light-induced single-crystal-to-single-crystal transformation of these -[4]rotaxanes, producing hybrid [3]rotaxanes containing uniquely arranged -head-to-tail anthracene dimers─the first reported photoresponsive architecture of this type. These structural transformations demonstrate the dynamic, stimuli-responsive character of these hybrid systems. This work establishes a new paradigm for the precision engineering of rotaxanes using organo-POM building blocks, revealing their remarkable potential for creating smart materials with programmable structural changes. The successful integration of covalent modification, supramolecular templating, and photoresponsive components provides a powerful platform for developing next-generation multifunctional molecular machines and adaptive nanomaterials with precisely controlled properties.
有机-无机杂化轮烷的合理设计对于推进分子机器和功能纳米材料至关重要,然而将金属-氧簇整合到互锁体系中仍然具有挑战性。在此,我们提出了一种用于杂化轮烷的精确合成策略,该策略将γ-环糊精(γ-CD)主体与基于安德森型多金属氧酸盐(POM)的客体相结合。这种方法利用共价POM修饰并结合策略性锚定的有机官能团来控制超分子组装,从而能够构建具有可控结构变化的-[2]-、[3]-和[4]轮烷。值得注意的是,我们获得了首个超分子-[4]轮烷的单晶实例,其特征是γ-CD二聚体由两个有机-POM单元穿入。通过这些-[4]轮烷的光诱导单晶到单晶转变实现了一个关键突破,产生了包含独特排列的头对头蒽二聚体的杂化[3]轮烷——这是首次报道的这种类型的光响应结构。这些结构转变证明了这些杂化体系的动态、刺激响应特性。这项工作为使用有机-POM构建块精确工程化轮烷建立了一个新范式,揭示了它们在创建具有可编程结构变化的智能材料方面的巨大潜力。共价修饰、超分子模板和光响应组件的成功整合为开发具有精确控制特性的下一代多功能分子机器和自适应纳米材料提供了一个强大的平台。