Suppr超能文献

机器学习预测模型对新辅助化疗后临床淋巴结阳性乳腺癌前哨淋巴结活检假阴性率的影响。

Effect of a machine learning prediction model on the false-negative rate of sentinel lymph node biopsy for clinically node-positive breast cancer after neoadjuvant chemotherapy.

作者信息

Chen Minyan, Hong Tianzi, Wang Yali, Li Shengmei, Zeng Bangwei, Chen Cong, Zhang Jie, Guo Wenhui, Chen Lili, Lin Yuxiang, Wang Chuan, Fu Fangmeng

机构信息

Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China; Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China.

Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China.

出版信息

Breast. 2025 Jul 17;83:104543. doi: 10.1016/j.breast.2025.104543.

Abstract

BACKGROUND

Machine learning (ML) models can be used to predict axillary pathological complete responses (pCRs) in clinically node-positive (cN+) breast cancer after neoadjuvant chemotherapy (NAC). We developed an ML model combining clinicopathological characteristics and axillary ultrasound features before and after NAC to predict the possibility of axillary pCR in NAC-treated cN + breast cancer.

METHODS

Patients with cN + breast cancer who received NAC were categorized into training and verification cohorts (7:3 ratio). Independent predictors of axillary pCR were selected using univariate and multivariate logistic regression analyses; six ML models were developed to predict pCRs. Another independent prospective cohort of 126 patients was enrolled to evaluate false-negative cases when the best-performing model was used to guide patient selection for sentinel lymph node biopsy (SLNB).

RESULTS

Overall, 614 patients with breast cancer were included. Age, menstrual status, cN staging before NAC, molecular subtype, histological grade, tumor shrinkage percentage after NAC, and lymph node cortical thickening ≥3 mm before and after NAC were independent predictors of axillary pCR. A multilayer perceptron model had the best stability and predictive performance, yielding the highest area under the receiver operating characteristic curve of 0.801 (training) and 0.774 (validation). When applying this model to the independent test cohort to guide patient selection for SLNB, the false-negative rate was reduced from 22.2 % to 1.4 %.

CONCLUSION

We established an ML model with excellent performance to predict pCR in cN + breast cancer after NAC. The ML model demonstrated potential to reduce the false-negative rate of single-tracer SLNB when used as an adjunct to clinical judgment.

摘要

背景

机器学习(ML)模型可用于预测新辅助化疗(NAC)后临床淋巴结阳性(cN+)乳腺癌的腋窝病理完全缓解(pCR)情况。我们开发了一种结合NAC前后临床病理特征和腋窝超声特征的ML模型,以预测接受NAC治疗的cN+乳腺癌患者腋窝pCR的可能性。

方法

将接受NAC的cN+乳腺癌患者分为训练组和验证组(比例为7:3)。采用单因素和多因素逻辑回归分析选择腋窝pCR的独立预测因素;开发了六个ML模型来预测pCR。纳入另一个由126名患者组成的独立前瞻性队列,以评估在使用表现最佳的模型指导前哨淋巴结活检(SLNB)患者选择时的假阴性病例。

结果

总共纳入了614例乳腺癌患者。年龄、月经状态、NAC前的cN分期、分子亚型、组织学分级、NAC后的肿瘤缩小百分比以及NAC前后淋巴结皮质增厚≥3mm是腋窝pCR的独立预测因素。多层感知器模型具有最佳的稳定性和预测性能,在训练集和验证集中的受试者操作特征曲线下面积分别为0.801和0.774。当将该模型应用于独立测试队列以指导SLNB患者选择时,假阴性率从22.2%降至1.4%。

结论

我们建立了一个性能优异的ML模型,用于预测NAC后cN+乳腺癌的pCR。该ML模型作为临床判断的辅助手段,显示出降低单示踪剂SLNB假阴性率的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d1a/12329070/21cbca757d55/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验