Hang Xudong, Lan Weiqi, Yanqiang Huang, Huang Hongming, Zhang Mingjing, Zeng Liping, Shi Ting, Bai Yuefan, Yang Zhiyu, Hu Shanwei, Wang Junfan, Dong Linlin, Tong Qian, Jia Jia, Bi Shuzhuang, Xia Qianfeng, Gao Yan, Bi Hongkai
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.
Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
Nat Commun. 2025 Jul 29;16(1):6965. doi: 10.1038/s41467-025-62477-4.
Helicobacter pylori, a globally significant pathogen, plays a central etiological role in diverse gastric pathologies ranging from chronic gastritis and peptic ulcers to gastric adenocarcinoma. Although conventional antibiotics effectively inhibit or kill growing helical H. pylori, metabolically dormant coccoid forms of H. pylori exhibit considerable tolerance, posing a persistent and clinically significant challenge. Here, we report napabucasin (2-acetylfuro-1,4-naphthoquinone) as a redox-cycling antibiotic with potent bactericidal activity against both drug-resistant helical and coccoid forms of H. pylori. Notably, napabucasin does not induce acquired resistance in vitro and demonstrates superior efficacy compared to standard triple therapy in murine infection models. Mechanistic studies reveal that napabucasin acts through 2-oxoglutarate:acceptor oxidoreductase (OOR)-catalyzed futile redox cycling, generating bactericidal levels of reactive oxygen species (ROS). Compared to menaquinone 6, a proposed physiological electron acceptor, napabucasin exhibits enhanced oxidative capacity. Structural, biochemical, and microbiological analyses identify Leu44 and Lys46 within the OorD subunit as critical residues for napabucasin recognition and catalysis. These findings establish OOR-mediated redox cycling as a robust antimicrobial strategy that sustains endogenous ROS production to combat refractory H. pylori infections.
幽门螺杆菌是一种在全球范围内具有重要意义的病原体,在从慢性胃炎、消化性溃疡到胃腺癌等多种胃部疾病中起着核心病因作用。尽管传统抗生素能有效抑制或杀死生长中的螺旋形幽门螺杆菌,但代谢休眠的球形幽门螺杆菌表现出相当强的耐受性,这构成了一个持续且具有临床意义的挑战。在此,我们报告萘布卡生(2-乙酰基呋喃并-1,4-萘醌)是一种氧化还原循环抗生素,对耐药螺旋形和球形幽门螺杆菌均具有强大的杀菌活性。值得注意的是,萘布卡生在体外不会诱导获得性耐药,并且在小鼠感染模型中显示出比标准三联疗法更优异的疗效。机制研究表明,萘布卡生通过2-酮戊二酸:受体氧化还原酶(OOR)催化的无效氧化还原循环发挥作用,产生杀菌水平的活性氧(ROS)。与一种假定的生理电子受体甲基萘醌6相比,萘布卡生表现出更强的氧化能力。结构、生化和微生物学分析确定OorD亚基中的Leu44和Lys46是萘布卡生识别和催化的关键残基。这些发现确立了OOR介导的氧化还原循环作为一种强大的抗菌策略,可维持内源性ROS的产生以对抗难治性幽门螺杆菌感染。