Borni Abdelhalim, Bessous Noureddine, Zaghba Layachi, Bouchakour Abdelhak, Agmas Melkamu Sisay, Ali Enas, Ghoneim Sherif S M, Hoballah Ayman
Centre de Développement des Energies Renouvelables, Unité de Recherche Appliquée en Energies Renouvelables, URAER, CDER, Ghardaïa, 47133, Algeria.
Department of Electrical Engineering, Fac. Technology, University of El Oued, El-Oued, 39000, Algeria.
Sci Rep. 2025 Jul 29;15(1):27678. doi: 10.1038/s41598-025-12593-4.
This paper presents the design and simulation of an optimized fuzzy logic Maximum Power Point Tracking (MPPT) controller for grid-tied wind turbines, utilizing Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Four distinct methodologies are explored to determine the most suitable approach. Initially, the conventional perturb-and-observe technique is employed. Subsequently, the efficacy of fuzzy logic control without optimization is evaluated. Following this, FLC is enhanced by integrating particle swarm optimization and genetic algorithms. The novelty of employing fuzzy logic control optimized with PSO and GA lies in its ability to address inherent challenges in wind energy systems, such as varying wind speeds and grid voltage fluctuations. By combining the adaptability of fuzzy logic with the optimization systems of PSO and GA, our approach maximizes energy yield, ensures grid stability, and enhances overall system performance. This methodology represents a significant stride in renewable energy integration and grid management. To expedite the tuning process, the input and output membership function mappings are quickly adjusted to achieve the desired set point. Moreover, the mitigation of undesired occurrences such as distortion and abrupt wind speed variations is carefully reduced. A comparative analysis is provided between conventional P&O, standalone FLC, FLC-GA, and FLC-PSO to improve the wind energy conversion system. PSO and GA are capable of optimizing a fuzzy logic MPPT controller. PSO is often preferred for its quicker convergence, higher tracking accuracy, and lower computational complexity, resulting in more efficient and stable performance in wind energy conversion systems. PSO usually converges faster than GA, translating to a shorter transient time (0.05 s) when the system seeks the optimal power point in varying wind conditions. It results in a more responsive system, with faster adjustments to changes in wind speed.
本文介绍了一种利用粒子群优化算法(PSO)和遗传算法(GA)设计并仿真的用于并网风力涡轮机的优化模糊逻辑最大功率点跟踪(MPPT)控制器。探索了四种不同的方法来确定最合适的方法。首先,采用传统的扰动观察技术。随后,评估未优化的模糊逻辑控制的效果。在此之后,通过集成粒子群优化算法和遗传算法来增强模糊逻辑控制(FLC)。采用PSO和GA优化模糊逻辑控制的新颖之处在于其能够应对风能系统中固有的挑战,如风速变化和电网电压波动。通过将模糊逻辑的适应性与PSO和GA的优化系统相结合,我们的方法可实现能量产量最大化、确保电网稳定性并提高整体系统性能。这种方法代表了可再生能源整合和电网管理方面的重大进步。为了加快调整过程,快速调整输入和输出隶属函数映射以达到期望的设定点。此外,仔细减少诸如失真和风速突变等不良情况的发生。对传统的扰动观察法(P&O)、独立的FLC、FLC-GA和FLC-PSO进行了对比分析,以改进风能转换系统。PSO和GA能够优化模糊逻辑MPPT控制器。PSO因其收敛速度更快、跟踪精度更高和计算复杂度更低而通常更受青睐,从而在风能转换系统中实现更高效、稳定的性能。PSO通常比GA收敛得更快,这意味着当系统在变化的风况下寻找最优功率点时,过渡时间更短(0.05秒)。这使得系统响应更快,能够更快地适应风速变化。