Suppr超能文献

微量营养素缺乏重塑植物-微生物相互作用网络:解析无菌系统中的微生物群落动态和功能适应性

Micronutrient deficiency reshapes plant-microbe interaction networks: unraveling microbial community dynamics and functional adaptability in a sterile system.

作者信息

Wu Jie, Jibril Sauban Musa, Liu Rong, Yang Bingjuan, Xu Yuru, Wang Ling, Wang Yi, Li Chengyun

机构信息

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.

Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.

出版信息

BMC Plant Biol. 2025 Jul 29;25(1):979. doi: 10.1186/s12870-025-06966-0.

Abstract

UNLABELLED

Micronutrient deficiencies critically influence plant development and plant–microbe interactions, yet their role in reshaping microbial community dynamics remains poorly resolved. Here, we hypothesized that micronutrient deprivation alters plant-associated microbiomes through physiological and microbiota-mediated pathways, with cascading effects on plant growth and stress adaptation. Using axenic conditions, we subjected  tissue culture seedlings to copper (Cu), manganese (Mn), molybdenum (Mo), and boron (B) deficiencies. We integrated 16S rRNA/ITS sequencing, functional prediction, and co-occurrence network analysis to unravel microbial responses. Our results demonstrate that Cu deficiency reduced bacterial alpha diversity (25% decline in Shannon index,  < 0.05), while Mn, Mo, and B deficiencies enhanced microbial richness (Chao1 increase: 15–30%). Taxonomic profiling revealed stress-adapted genera (, , ) as key responders, with  abundance decreasing under Cu/B deficiency but increases under Mn/Mo deprivation. Functional shifts included suppressed photosynthesis-associated bacteria under Cu limitation and enriched nitrogen-cycling taxa (e.g., denitrifiers) in Mo-deficient seedlings. Network analysis revealed intensified microbial interactions under Mn/Mo deficiency, with lower microbial interactions under Cu/B deficient treatments. Crucially, we propose a bidirectional "plant–microbe" regulatory axis: Cu deficiency directly impairs plant growth by disrupting photosynthetic symbionts and enriching potential pathogens, while Mn/Mo deprivation enriched endophytic taxa linked to potential nutrient metabolism and stress resilience. This study pioneers a sterile-system approach to decouple micronutrient effects from soil confounders, offering mechanistic insights into microbiome-driven plant adaptation.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1186/s12870-025-06966-0.

摘要

未标记

微量营养素缺乏严重影响植物发育和植物与微生物的相互作用,但其在重塑微生物群落动态中的作用仍未得到很好的解决。在这里,我们假设微量营养素缺乏通过生理和微生物群介导的途径改变植物相关微生物群,对植物生长和胁迫适应产生连锁反应。在无菌条件下,我们使组织培养幼苗遭受铜(Cu)、锰(Mn)、钼(Mo)和硼(B)缺乏。我们整合了16S rRNA/ITS测序、功能预测和共现网络分析来揭示微生物的反应。我们的结果表明,缺铜降低了细菌的α多样性(香农指数下降25%,<0.05),而缺锰、钼和硼则增加了微生物的丰富度(Chao1增加:15 - 30%)。分类学分析揭示了适应胁迫的属(如 、 、 )是关键响应者,其丰度在缺铜/硼时下降,但在缺锰/钼时增加。功能转变包括在铜限制下光合作用相关细菌受到抑制,以及在缺钼幼苗中氮循环类群(如反硝化细菌)富集。网络分析显示,缺锰/钼时微生物相互作用增强,而缺铜/硼处理下微生物相互作用较低。至关重要的是,我们提出了一个双向的“植物 - 微生物”调节轴:缺铜通过破坏光合共生体和富集潜在病原体直接损害植物生长,而缺锰/钼则富集了与潜在养分代谢和胁迫恢复力相关的内生类群。本研究开创了一种无菌系统方法,将微量营养素的影响与土壤混杂因素分离,为微生物群驱动的植物适应提供了机制性见解。

补充信息

在线版本包含可在10.1186/s12870 - 025 - 06966 - 0获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd7b/12305932/75963ccebb8a/12870_2025_6966_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验