Suppr超能文献

利用早期预警信号识别赤狐(赤狐属)的扩散事件。

Identifying dispersal events of red foxes (Vulpes vulpes) using early warning signals.

作者信息

Oehler Felicitas, Arnold Janosch, Hackländer Klaus, Signer Johannes, Schai-Braun Stéphanie C, Hagen Robert

机构信息

Wildlife Research Unit, Agricultural Centre Baden-Württemberg, LAZBW, Aulendorf, Germany.

Institute of Wildlife Biology and Game Management, Department for Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria.

出版信息

Mov Ecol. 2025 Jul 29;13(1):55. doi: 10.1186/s40462-025-00579-w.

Abstract

BACKGROUND

Many animals disperse to find their own territory, mates to reproduce or suitable environments to live. Dispersal can be described as a three-phase process consisting of two stationary phases (S and S) at the beginning and the end of a dispersal event. These stationary phases are temporally separated by a transient phase (T), where the animal moves from S to a new area S in space. The net squared displacement (NSD) is a frequently used metric to identify these phases from animal tracking data.

METHODS

We tested whether early warning signals (EWSs) on time series of the NSD, can be used to predict dispersal events. To identify EWSs we conducted a rolling window approach and evaluated the dispersal events by performing a spatial cluster analysis with the mechanistic range shift analysis (MRSA). We used data from 22 GPS-collared red foxes (Vulpes vulpes) as an example of a mammal species in which the juvenile (sub-) adult transition usually involves dispersal.

RESULTS

Applying EWSs resulted in the identification of both transitions from S to T and from T to S. For 10 individuals we detected EWSs. For 8 out of these 10 individuals (80%) we identified a spatial shift between S and S via a MRSA. Accordingly, for 8 out of 22 individuals (36%) we observed a transient phase (T) which led to a major and persistent transformation of red fox locations.

CONCLUSION

Even though the identification of dispersal events based on movement data is challenging using well known techniques such as state space models or the MRSA, our results suggested that EWS in combination with MRSA is appropriate to detect and identify dispersal events in radio-collared mammals. Thus, in the context of identifying dispersal events using EWSs we recommend to evaluate the existence of stationary and transient phases using the MSRA. The benefit of using EWSs is the calculation of the NSD and simple statistics (standard deviation, autocorrelation) and no requirement of high resolution tracking data. Additionally, transitions to the stationary or transient phase might be detected where home range calculations are not possible.

摘要

背景

许多动物会扩散以寻找自己的领地、配偶进行繁殖或适宜的生存环境。扩散可被描述为一个三阶段过程,在扩散事件的开始和结束时包含两个静止阶段(S 和 S)。这些静止阶段在时间上被一个过渡阶段(T)隔开,在此期间动物在空间中从 S 移动到一个新区域 S。净平方位移(NSD)是一种常用的指标,用于从动物追踪数据中识别这些阶段。

方法

我们测试了 NSD 时间序列上的早期预警信号(EWS)是否可用于预测扩散事件。为了识别 EWS,我们采用了滚动窗口方法,并通过机械范围转移分析(MRSA)进行空间聚类分析来评估扩散事件。我们以 22 只佩戴 GPS 项圈的赤狐(赤狐属)的数据为例,赤狐是一种哺乳动物,其幼年期(亚)成年期过渡通常涉及扩散。

结果

应用 EWS 可识别从 S 到 T 以及从 T 到 S 的转变。我们检测到 10 只个体存在 EWS。在这 10 只个体中的 8 只(80%),我们通过 MRSA 识别出 S 和 S 之间的空间转移。相应地,在 22 只个体中的 8 只(36%),我们观察到一个过渡阶段(T),这导致了赤狐位置的重大且持续的转变。

结论

尽管使用状态空间模型或 MRSA 等知名技术基于移动数据识别扩散事件具有挑战性,但我们的结果表明 EWS 与 MRSA 相结合适用于检测和识别无线电项圈哺乳动物中的扩散事件。因此,在使用 EWS 识别扩散事件的背景下,我们建议使用 MSRA 评估静止和过渡阶段的存在。使用 EWS 的好处是计算 NSD 和简单统计量(标准差、自相关),并且不需要高分辨率追踪数据。此外,在无法进行家域计算的情况下,可能检测到向静止或过渡阶段的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7c/12309036/a2370e06806a/40462_2025_579_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验