Devara I Ketut Gary, Lestari Windy Ayu, Paturi Uma Maheshwera Reddy, Park Jun Hong, Reddy Nagireddy Gari Subba
Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea.
Department of Mechanical Engineering, CVR College of Engineering, Hyderabad 501510, Telangana, India.
Materials (Basel). 2025 Jul 10;18(14):3264. doi: 10.3390/ma18143264.
The accurate estimation of the higher heating value (HHV) of wood biomass is essential to evaluating the latter's energy potential as a renewable energy material. This study proposes an Artificial Neural Network (ANN) model to predict the HHV by using proximate analysis parameters-moisture, volatile matter, ash, and fixed carbon. A dataset of 252 samples (177 for training and 75 for testing), sourced from the Phyllis database, which compiles the physicochemical properties of lignocellulosic biomass and related feedstocks, was used for model development. Various ANN architectures were explored, including one to three hidden layers with 1 to 20 neurons per layer. The best performance was achieved with the 4-11-11-11-1 architecture trained using the backpropagation algorithm, yielding an adjusted R of 0.967 with low mean absolute error (MAE) and root mean squared error (RMSE) values. A graphical user interface (GUI) was developed for real-time HHV prediction across diverse wood types. Furthermore, the model's performance was benchmarked against 26 existing empirical and statistical models, and it outperformed them in terms of accuracy and generalization. This ANN-based tool offers a robust and accessible solution for carbon utilization strategies and the development of new energy storage material.
准确估算木质生物质的高位发热量(HHV)对于评估其作为可再生能源材料的能源潜力至关重要。本研究提出了一种人工神经网络(ANN)模型,通过使用近似分析参数(水分、挥发物、灰分和固定碳)来预测HHV。使用了一个包含252个样本的数据集(177个用于训练,75个用于测试),该数据集来自Phyllis数据库,该数据库汇编了木质纤维素生物质及相关原料的物理化学性质,用于模型开发。探索了各种ANN架构,包括具有1至20个神经元的一至三个隐藏层。使用反向传播算法训练的4-11-11-11-1架构实现了最佳性能,调整后的R为0.967,平均绝对误差(MAE)和均方根误差(RMSE)值较低。开发了一个图形用户界面(GUI),用于对不同木材类型进行实时HHV预测。此外,该模型的性能与26个现有的经验模型和统计模型进行了基准测试,在准确性和泛化性方面均优于它们。这种基于ANN的工具为碳利用策略和新型储能材料的开发提供了一个强大且易于使用的解决方案。