Suppr超能文献

通过高熵策略抑制立方普鲁士蓝类似物中的相变以实现高效锌离子存储

Suppressing the Phase Transformation in Cubic Prussian Blue Analogues via a High-Entropy Strategy for Efficient Zinc-Ion Storage.

作者信息

Huang Hongwei, Liu Haojun, Wang Yang, Li Yi, Li Qian

机构信息

College of Materials Science and Engineering, and Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China.

出版信息

Materials (Basel). 2025 Jul 21;18(14):3409. doi: 10.3390/ma18143409.

Abstract

Prussian blue analogs (PBAs) are widely recognized as promising candidates for aqueous zinc-ion batteries (AZIBs) due to their stable three-dimensional framework structure. However, their further development is limited by their low specific capacity and unsatisfactory cycling performance, primarily caused by phase transformation during charge-discharge cycles. Herein, we employed a high-entropy strategy to introduce five different metal elements (Fe, Co, Ni, Mn, and Cu) into the nitrogen-coordinated M sites of PBAs, forming a high-entropy Prussian blue analog (HEPBA). By leveraging the cocktail effect of the high-entropy strategy, the phase transformation in the HEPBA was significantly suppressed. Consequently, the HEPBA as an AZIB cathode delivered a high reversible specific capacity of 132.1 mAh g at 0.1 A g, and showed exceptional cycling stability with 84.7% capacity retention after 600 cycles at 0.5 A g. This work provides innovative insights into the rational design of advanced cathode materials for AZIBs.

摘要

普鲁士蓝类似物(PBAs)因其稳定的三维框架结构而被广泛认为是水系锌离子电池(AZIBs)的有前途的候选材料。然而,它们的进一步发展受到其低比容量和不理想的循环性能的限制,这主要是由充放电循环过程中的相变引起的。在此,我们采用高熵策略将五种不同的金属元素(铁、钴、镍、锰和铜)引入到PBAs的氮配位M位点,形成了一种高熵普鲁士蓝类似物(HEPBA)。通过利用高熵策略的混合效应,HEPBA中的相变得到了显著抑制。因此,HEPBA作为AZIB的正极在0.1 A g下具有132.1 mAh g的高可逆比容量,并在0.5 A g下循环600次后表现出优异的循环稳定性,容量保持率为84.7%。这项工作为合理设计先进的AZIB正极材料提供了创新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b704/12297942/f619bb9bc5d9/materials-18-03409-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验