Suppr超能文献

通过插入聚苯胺对二硫化钼进行层间距修饰以实现高可逆水系锌离子电池的快速动力学

Interlayer-Spacing-Modification of MoS via Inserted PANI with Fast Kinetics for Highly Reversible Aqueous Zinc-Ion Batteries.

作者信息

Fan Shuang, Gong Yangyang, Chen Suliang, Zhang Yingmeng

机构信息

School of Sino-German Intelligent Manufacturing, Shenzhen City Polytechnic, Shenzhen 518100, China.

Sunwoda Mobility Energy Technology Co., Ltd., Shenzhen 518132, China.

出版信息

Micromachines (Basel). 2025 Jun 26;16(7):754. doi: 10.3390/mi16070754.

Abstract

Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, and insufficient structural stability during cycling. These limitations are primarily attributed to their narrow interlayer spacing, strong electrostatic interactions, the large ionic hydration radius, and their high binding energy of Zn ions. To address these restrictions, an in situ organic polyaniline (PANI) intercalation strategy is proposed to construct molybdenum disulfide (MoS)-based cathodes with extended layer spacing, thereby improving the zinc storage capabilities. The intercalation of PANI effectively enhances interplanar spacing of MoS from 0.63 nm to 0.98 nm, significantly facilitating rapid Zn diffusion. Additionally, the π-conjugated electron structure introduced by PANI effectively shields the electrostatic interaction between Zn ions and the MoS host, thereby promoting Zn diffusion kinetics. Furthermore, PANI also serves as a structural stabilizer, maintaining the integrity of the MoS layers during Zn-ion insertion/extraction processes. Furthermore, the conductive conjugated PANI boosts the ionic and electronic conductivity of the electrodes. As expected, the PANI-MoS electrodes exhibit exceptional electrochemical performance, delivering a high specific capacity of 150.1 mA h g at 0.1 A g and retaining 113.3 mA h g at 1 A g, with high capacity retention of 81.2% after 500 cycles. Ex situ characterization techniques confirm the efficient and reversible intercalation/deintercalation of Zn ions within the PANI-MoS layers. This work supplies a rational interlayer engineering strategy to optimize the electrochemical performance of MoS-based electrodes. By addressing the structural and kinetic limitations of TMDs, this approach offers new insights into the development of high-performance AZIBs for energy storage applications.

摘要

层状过渡金属二硫属化物(TMDs)因其可调节的层间结构和丰富的锌存储活性位点,作为水系锌离子电池(AZIBs)的阴极材料受到了广泛关注。然而,未经修饰的TMDs面临着重大挑战,包括氧化还原活性有限、动力学迟缓以及循环过程中结构稳定性不足。这些限制主要归因于其狭窄的层间距、强静电相互作用、较大的离子水合半径以及锌离子的高结合能。为了解决这些限制,提出了一种原位有机聚苯胺(PANI)插层策略,以构建具有扩展层间距的二硫化钼(MoS)基阴极,从而提高锌存储能力。PANI的插层有效地将MoS的层间距从0.63 nm扩大到0.98 nm,显著促进了锌的快速扩散。此外,PANI引入的π共轭电子结构有效地屏蔽了锌离子与MoS主体之间的静电相互作用,从而促进了锌的扩散动力学。此外,PANI还作为结构稳定剂,在锌离子插入/脱出过程中保持MoS层的完整性。此外,导电共轭PANI提高了电极的离子和电子导电性。正如预期的那样,PANI-MoS电极表现出优异的电化学性能,在0.1 A g下具有150.1 mA h g的高比容量,在1 A g下保持113.3 mA h g,在500次循环后具有81.2%的高容量保持率。非原位表征技术证实了锌离子在PANI-MoS层内的高效可逆插层/脱层。这项工作提供了一种合理的层间工程策略,以优化MoS基电极的电化学性能。通过解决TMDs的结构和动力学限制,该方法为开发用于储能应用的高性能AZIBs提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cfb/12300659/299436ebe1f3/micromachines-16-00754-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验