Wang Yangyang, Lv Jiaxin, Hong Laixin, Zhang Jiakai, Chen Chunxia, Xu Ao, Huang Miao, Ren Xiubin, Bai Jinbo, Wang Hui, Liu Xiaojie
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China.
College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 710054, Xi'an, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414757. doi: 10.1002/anie.202414757. Epub 2024 Nov 6.
The catastrophic dendrite hyperplasia and parasitic reactions severely impede the future deployment of aqueous Zn-ion batteries. Controlling zinc orientation growth is considered to be an effective method to overcome the aforementioned concerns, especially for regulating the (002) plane of deposited Zn. Unfortunately, Zn (002) texture is difficult to obtain stable cycling under high deposition capacity resulting from its large lattice distortion and nonuniform distribution in electric field. Herein, different from traditional cognition, a crystallization orientation regulation tactic is proposed to boost Zn (101) texture exposure and inhibit zinc dendrite proliferation during plating/stripping. Experimental results and theoretical calculations demonstrate the malate molecules preferentially adsorb on the Zn (002) facet, leading to the texture exposure of distinctive Zn (101) plane. Meanwhile, the -COOH and -OH groups of malate molecules exhibit strong adsorption on the Zn anode surface and chelate with Zn, achieving HO-poor electrical double layer. Very impressively, the multifunctional malate additive enlists zinc anode to survive for 600 h under a harsh condition of 15 mA cm/15 mAh cm. Moreover, the symmetric cell harvests highly-reversible cycling life of 6600 h at 5 mA cm/1.25 mAh cm, remarkably outperforming the ZnSO electrolyte. The assembled Zn//MnO full cells also demonstrate prominent electrochemical reversibility.
灾难性的枝晶增生和寄生反应严重阻碍了水系锌离子电池的未来应用。控制锌的取向生长被认为是克服上述问题的有效方法,特别是对于调控沉积锌的(002)面。不幸的是,由于其较大的晶格畸变和在电场中分布不均匀,Zn(002)织构在高沉积容量下难以实现稳定循环。在此,与传统认知不同,提出了一种结晶取向调控策略,以促进Zn(101)织构暴露并抑制电镀/剥离过程中锌枝晶的生长。实验结果和理论计算表明,苹果酸分子优先吸附在Zn(002)晶面上,导致独特的Zn(101)面织构暴露。同时,苹果酸分子的-COOH和-OH基团在锌阳极表面表现出强烈的吸附并与锌螯合,形成贫羟基双电层。非常令人印象深刻的是,多功能苹果酸添加剂使锌阳极在15 mA cm/15 mAh cm的苛刻条件下能够存活600 h。此外,对称电池在5 mA cm/1.25 mAh cm下实现了6600 h的高度可逆循环寿命,明显优于ZnSO电解质。组装的Zn//MnO全电池也表现出突出的电化学可逆性。