Li Yuhan, Zhang Jian, Zhuo Lin, Wang Xianjing, Sun Jingyao, Xue Ping, Chen Ke
College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Guangxi Construction Testing Center Co., Ltd., Nanning 530000, China.
Micromachines (Basel). 2025 Jul 20;16(7):830. doi: 10.3390/mi16070830.
Phase-change microcapsules offer significant advantages for thermal energy storage and regulation. However, conventional mechanical agitation fabrication methods encounter difficulties in achieving monodispersity, precise size control, and structural uniformity. Droplet microfluidics emerges as a promising alternative, enabling controllable production of microcapsules with tunable sizes (1-1000 μm), programmable core-shell configurations, and high encapsulation efficiency. This review comprehensively summarizes recent advances in microfluidic strategies for phase-change microcapsules fabricating, including single encapsulation, multi-core encapsulation, and high-throughput parallelization and their applications in solar energy storage, building thermal regulation, electronics cooling, and smart textiles. The review highlights key challenges for future advancement which will unlock the full potential of microfluidics-engineered phase-change microcapsules in next-generation thermal energy technologies.
相变微胶囊在热能存储和调节方面具有显著优势。然而,传统的机械搅拌制造方法在实现单分散性、精确尺寸控制和结构均匀性方面存在困难。微滴微流控技术成为一种有前途的替代方法,能够可控地生产尺寸可调(1-1000μm)、具有可编程核壳结构且封装效率高的微胶囊。本文综述全面总结了用于制造相变微胶囊的微流控策略的最新进展,包括单封装、多核封装和高通量并行化,以及它们在太阳能存储、建筑热调节、电子冷却和智能纺织品中的应用。综述强调了未来发展的关键挑战,这些挑战将释放微流控工程相变微胶囊在下一代热能技术中的全部潜力。