Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
Int J Biol Macromol. 2023 Jun 15;240:124374. doi: 10.1016/j.ijbiomac.2023.124374. Epub 2023 Apr 6.
The leakage during the phase change process and low thermal conductivity of PCMs limit their application area. In this study, Pickering emulsion stabilized with chitin nanocrystals (ChNCs) was used to prepare paraffin wax (PW) microcapsules by forming a dense melamine-formaldehyde resin shell on the surface of droplets. The PW microcapsules were then loaded into the metal foam to endow high thermal conductivity to the composite. The PW emulsions could be formed at low concentrations of ChNCs (0.3 wt%), and the PW microcapsules exhibits a favorable thermal cycling stability and a satisfactory latent heat-storage capacity over 170 J/g. Most importantly, the encapsulation of the polymer shell not only endows the microcapsules with high encapsulation efficiency of 98.8 %, non-leakage properties under prolonged high temperature conditions, but also with high flame retardancy. In addition, the composite of PW microcapsules/copper foam shows satisfactory performance in terms of thermal conductivity, thermal storage capacity and thermal reliability, which can be used for effective temperature regulation of heat generating materials. This study provides new design strategy of natural and sustainable nanomaterials stabilized PCMs, which shows promising application in the field of energy management and thermal equipment temperature regulation.
相变过程中的渗漏和低导热系数限制了 PCM 的应用领域。在本研究中,采用壳聚糖纳米晶体(ChNCs)稳定的 Pickering 乳液,通过在液滴表面形成致密的三聚氰胺-甲醛树脂壳,制备了石蜡(PW)微胶囊。然后将 PW 微胶囊负载到金属泡沫中,赋予复合材料高导热性。在 ChNCs 浓度低至 0.3wt%时,可形成 PW 乳液,PW 微胶囊表现出良好的热循环稳定性和超过 170J/g 的令人满意的潜热储能能力。最重要的是,聚合物壳的封装不仅赋予微胶囊 98.8%的高封装效率、在长时间高温条件下无泄漏特性,而且具有高阻燃性。此外,PW 微胶囊/铜泡沫复合材料在导热性、储热能力和热可靠性方面表现出令人满意的性能,可用于有效调节发热材料的温度。本研究为天然可持续纳米材料稳定 PCM 提供了新的设计策略,有望在能源管理和热设备温度调节领域得到应用。