Suppr超能文献

迈向一个通过K近邻算法实现用户可访问的用于饮料识别的光谱传感平台。

Toward a User-Accessible Spectroscopic Sensing Platform for Beverage Recognition Through K-Nearest Neighbors Algorithm.

作者信息

Montaina Luca, Palmieri Elena, Lucarini Ivano, Maiolo Luca, Maita Francesco

机构信息

National Research Council (CNR), Institute for Microelectronics and Microsystems (IMM), 00133 Rome, Italy.

出版信息

Sensors (Basel). 2025 Jul 9;25(14):4264. doi: 10.3390/s25144264.

Abstract

Proper nutrition is a fundamental aspect to maintaining overall health and well-being, influencing both physical and social aspects of human life; an unbalanced or inadequate diet can lead to various nutritional deficiencies and chronic health conditions. In today's fast-paced world, monitoring nutritional intake has become increasingly important, particularly for those with specific dietary needs. While smartphone-based applications using image recognition have simplified food tracking, they still rely heavily on user interaction and raise concerns about practicality and privacy. To address these limitations, this paper proposes a novel, compact spectroscopic sensing platform for automatic beverage recognition. The system utilizes the AS7265x commercial sensor to capture the spectral signature of beverages, combined with a K-Nearest Neighbors (KNN) machine learning algorithm for classification. The approach is designed for integration into everyday objects, such as smart glasses or cups, offering a noninvasive and user-friendly alternative to manual tracking. Through optimization of both the sensor configuration and KNN parameters, we identified a reduced set of four wavelengths that achieves over 96% classification accuracy across a diverse range of common beverages. This demonstrates the potential for embedding accurate, low-power, and cost-efficient sensors into Internet of Things (IoT) devices for real-time nutritional monitoring, reducing the need for user input while enhancing accessibility and usability.

摘要

合理营养是维持整体健康和幸福的一个基本方面,影响着人类生活的身体和社会层面;不均衡或不足的饮食会导致各种营养缺乏和慢性健康问题。在当今快节奏的世界中,监测营养摄入变得越来越重要,尤其是对于那些有特定饮食需求的人。虽然基于智能手机的图像识别应用简化了食物追踪,但它们仍然严重依赖用户交互,并引发了对实用性和隐私性的担忧。为了解决这些限制,本文提出了一种用于自动饮料识别的新型紧凑型光谱传感平台。该系统利用AS7265x商业传感器捕获饮料的光谱特征,并结合K近邻(KNN)机器学习算法进行分类。该方法旨在集成到日常物品中,如智能眼镜或杯子,为手动追踪提供一种非侵入性且用户友好的替代方案。通过优化传感器配置和KNN参数,我们确定了一组减少到四个波长的组合,在各种常见饮料中实现了超过96%的分类准确率。这表明了将准确、低功耗和经济高效的传感器嵌入物联网(IoT)设备以进行实时营养监测的潜力,减少了用户输入的需求,同时提高了可及性和可用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验