Suppr超能文献

基于掩码自动编码器的无监督绝缘子缺陷检测方法

Unsupervised Insulator Defect Detection Method Based on Masked Autoencoder.

作者信息

Song Yanying, Xiong Wei

机构信息

Detroit Green Technology Institute, Hubei University of Technology, Wuhan 430068, China.

School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China.

出版信息

Sensors (Basel). 2025 Jul 9;25(14):4271. doi: 10.3390/s25144271.

Abstract

With the rapid expansion of high-speed rail infrastructure, maintaining the structural integrity of insulators is critical to operational safety. However, conventional defect detection techniques typically rely on extensive labeled datasets, struggle with class imbalance, and often fail to capture large-scale structural anomalies. In this paper, we present an unsupervised insulator defect detection framework based on a masked autoencoder (MAE) architecture. Built upon a vision transformer (ViT), the model employs an asymmetric encoder-decoder structure and leverages a high-ratio random masking scheme during training to facilitate robust representation learning. At inference, a dual-pass interval masking strategy enhances defect localization accuracy. Benchmark experiments across multiple datasets demonstrate that our method delivers competitive image- and pixel-level performance while significantly reducing computational overhead compared to existing ViT-based approaches. By enabling high-precision defect detection through image reconstruction without requiring manual annotations, this approach offers a scalable and efficient solution for real-time industrial inspection under limited supervision.

摘要

随着高铁基础设施的迅速扩张,保持绝缘子的结构完整性对运行安全至关重要。然而,传统的缺陷检测技术通常依赖大量带标签的数据集,难以应对类别不平衡问题,并且常常无法捕捉大规模结构异常。在本文中,我们提出了一种基于掩码自动编码器(MAE)架构的无监督绝缘子缺陷检测框架。该模型基于视觉Transformer(ViT)构建,采用非对称编码器 - 解码器结构,并在训练期间利用高比例随机掩码方案来促进稳健的表征学习。在推理时,双程间隔掩码策略提高了缺陷定位精度。在多个数据集上的基准实验表明,与现有的基于ViT的方法相比,我们的方法在图像和像素级别都具有竞争力,同时显著降低了计算开销。通过在无需人工标注的情况下通过图像重建实现高精度缺陷检测,该方法为有限监督下的实时工业检测提供了一种可扩展且高效的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验