Zhao Yuan, Xiao Sha-Sha, Liu Ji-Rui, Wu Sen
State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.
Sensors (Basel). 2025 Jul 9;25(14):4277. doi: 10.3390/s25144277.
This study presents an automatic PID control strategy for Tapping-Mode Atomic Force Microscopy (TM-AFM) that addresses the impacts of energy dissipation on tip-sample interactions. Our methodology integrates energy analysis to quantify the critical relationship between energy loss and phase lag dynamics in tapping mode. Additionally, systematic decomposition of interaction force is performed to enable the reconstruction of system transfer functions. The study in this work examines the fluctuations of PID gains during critical oscillations. A SIMULINK-based virtual TM-AFM is developed to simulate practical measurement conditions, based on which a lookup table for PID gains across various phase lags is generated. The efficacy of the proposed algorithm is experimentally validated through the experiments of a calibration nanogrid and two kinds of coated silicon samples, demonstrating the improved tracking accuracy and the improvement of surface height of 5.4% compared to regular control scheme.
本研究提出了一种用于轻敲模式原子力显微镜(TM-AFM)的自动PID控制策略,该策略解决了能量耗散对针尖-样品相互作用的影响。我们的方法集成了能量分析,以量化轻敲模式下能量损失与相位滞后动力学之间的关键关系。此外,对相互作用力进行系统分解,以实现系统传递函数的重构。本工作中的研究考察了临界振荡期间PID增益的波动情况。开发了基于SIMULINK的虚拟TM-AFM来模拟实际测量条件,并在此基础上生成了各种相位滞后下的PID增益查找表。通过校准纳米网格和两种涂层硅样品的实验,对所提算法的有效性进行了实验验证,结果表明与常规控制方案相比,跟踪精度得到了提高,表面高度提高了5.4%。