Suppr超能文献

基于协作分裂学习的6G级时分复用无源光网络(TDM-PON)系统动态带宽分配

Collaborative Split Learning-Based Dynamic Bandwidth Allocation for 6G-Grade TDM-PON Systems.

作者信息

Mohammed Alaelddin F Y, Allawi Yazan M, Moneer Eman M, Widaa Lamia O

机构信息

Information Technology, Department of International Studies, Dongshin University, 67, Dongshindae-gil, Naju-si 58245, Republic of Korea.

Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

Sensors (Basel). 2025 Jul 10;25(14):4300. doi: 10.3390/s25144300.

Abstract

Dynamic Bandwidth Allocation (DBA) techniques enable Time Division Multiplexing Passive Optical Network (TDM-PON) systems to efficiently manage upstream bandwidth by allowing the centralized Optical Line Terminal (OLT) to coordinate resource allocation among distributed Optical Network Units (ONUs). Conventional DBA techniques struggle to adapt to dynamic traffic conditions, resulting in suboptimal performance under varying load scenarios. This work suggests a Collaborative Split Learning-Based DBA (CSL-DBA) framework that utilizes the recently emerging Split Learning (SL) technique between the OLT and ONUs for the objective of optimizing predictive traffic adaptation and reducing communication overhead. Instead of requiring centralized learning at the OLT, the proposed approach decentralizes the process by enabling ONUs to perform local traffic analysis and transmit only model updates to the OLT. This cooperative strategy guarantees rapid responsiveness to fluctuating traffic conditions. We show by extensive simulations spanning several traffic scenarios, including low, fluctuating, and high traffic load conditions, that our proposed CSL-DBA achieves at least 99% traffic prediction accuracy, with minimal inference latency and scalable learning performance, and it reduces communication overhead by approximately 60% compared to traditional federated learning approaches, making it a strong candidate for next-generation 6G-grade TDM-PON systems.

摘要

动态带宽分配(DBA)技术使时分复用无源光网络(TDM-PON)系统能够通过允许集中式光线路终端(OLT)协调分布式光网络单元(ONU)之间的资源分配来有效管理上行带宽。传统的DBA技术难以适应动态流量状况,导致在不同负载场景下性能欠佳。这项工作提出了一种基于协作分裂学习的DBA(CSL-DBA)框架,该框架利用OLT和ONU之间最近出现的分裂学习(SL)技术,以优化预测流量适配并减少通信开销。所提出的方法不是在OLT进行集中式学习,而是通过使ONU能够执行本地流量分析并仅向OLT传输模型更新来分散该过程。这种协作策略保证了对波动流量状况的快速响应能力。我们通过涵盖多种流量场景(包括低流量、波动流量和高流量负载状况)的大量仿真表明,我们提出的CSL-DBA实现了至少99%的流量预测准确率,具有最小的推理延迟和可扩展的学习性能,并且与传统联邦学习方法相比,它将通信开销降低了约60%,使其成为下一代6G级TDM-PON系统的有力候选方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d5/12300252/f1b6372b0126/sensors-25-04300-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验