Suppr超能文献

基于人工智能的小尺度雾计算环境中分区的物联网应用的时滞感知任务调度。

Latency-Aware Task Scheduling for IoT Applications Based on Artificial Intelligence with Partitioning in Small-Scale Fog Computing Environments.

机构信息

Smart Contents Major, Division of ICT Convergence, Pyeongtaek University, 3825, Seodong-daero, Pyeongtaek-si 17869, Gyeonggi-do, Korea.

出版信息

Sensors (Basel). 2022 Sep 27;22(19):7326. doi: 10.3390/s22197326.

Abstract

The Internet of Things applications have become popular because of their lightweight nature and usefulness, which require low latency and response time. Hence, Internet of Things applications are deployed with the fog management layer (software) in closely located edge servers (hardware) as per the requirements. Due to their lightweight properties, Internet of Things applications do not consume many computing resources. Therefore, it is common that a small-scale data center can accommodate thousands of Internet of Things applications. However, in small-scale fog computing environments, task scheduling of applications is limited to offering low latency and response times. In this paper, we propose a latency-aware task scheduling method for Internet of Things applications based on artificial intelligence in small-scale fog computing environments. The core concept of the proposed task scheduling is to use artificial neural networks with partitioning capabilities. With the partitioning technique for artificial neural networks, multiple edge servers are able to learn and calculate hyperparameters in parallel, which reduces scheduling times and service level objectives. Performance evaluation with state-of-the-art studies shows the effectiveness and efficiency of the proposed task scheduling in small-scale fog computing environments while introducing negligible energy consumption.

摘要

物联网应用因其轻量级性质和实用性而变得流行,这些性质和实用性需要低延迟和响应时间。因此,根据需求,物联网应用部署在位置接近的边缘服务器(硬件)中的雾管理层(软件)中。由于其轻量级特性,物联网应用不会消耗大量计算资源。因此,一个小规模的数据中心可以容纳数千个物联网应用是很常见的。然而,在小规模雾计算环境中,应用程序的任务调度仅限于提供低延迟和响应时间。在本文中,我们提出了一种基于人工智能的物联网应用程序的低延迟感知任务调度方法,该方法适用于小规模雾计算环境。所提出的任务调度的核心概念是使用具有分区能力的人工神经网络。通过人工神经网络的分区技术,多个边缘服务器能够并行学习和计算超参数,从而减少调度时间和服务水平目标。与最先进的研究进行的性能评估表明,所提出的任务调度在引入可忽略的能耗的同时,在小规模雾计算环境中是有效和高效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab7e/9573754/a254d8fbe07a/sensors-22-07326-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验