Hanssens Chloë, Van Cleemput Jolien
Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
Pathogens. 2025 Jul 1;14(7):654. doi: 10.3390/pathogens14070654.
Human herpesviruses are double-stranded DNA viruses of which eight types have been identified at present. Herpesvirus infection comprises an active lytic phase and a lifelong latency phase with the possibility of reactivation. These infections are highly prevalent worldwide and can lead to a broad spectrum of clinical manifestations, ranging from mild symptoms to severe disease, particularly in immunocompromised individuals. Clustered regularly interspaced palindromic repeats (CRISPR)-based therapy is an interesting alternative to current antiviral drugs, which fail to cure latent infections and are increasingly challenged by viral resistance.
This scoping review aimed to summarize the current state of CRISPR-based antiviral strategies against herpesvirus infections, highlighting the underlying mechanisms, study design and outcomes, and challenges for clinical implementation.
A literature search was conducted in the databases PubMed and Web of Science, using both a general and an individual approach for each herpesvirus.
This scoping review identified five main mechanisms of CRISPR-based antiviral therapy against herpesvirus infections in vitro and/or in vivo. First, CRISPR systems can inhibit the active lytic replication cycle upon targeting viral lytic genes or host genes. Second, CRISPR technologies can remove latent viral genomes from infected cells by targeting viral genes essential for latency maintenance or destabilizing the viral genome. Third, reactivation of multiple latent herpesvirus infections can be inhibited by CRISPR-Cas-mediated editing of lytic viral genes, preventing a flare-up of clinical symptoms and reducing the risk of viral transmission. Fourth, CRISPR systems can purposefully induce viral reactivation to enhance recognition by the host immune system or improve the efficacy of existing antiviral therapies. Fifth, CRISPR technology can be applied to develop or enhance the efficiency of cellular immunotherapy.
Multiple studies demonstrate the potential of CRISPR-based antiviral strategies to target herpesvirus infections through various mechanisms in vitro and in vivo. However, aspects regarding the delivery and biosafety of CRISPR systems, along with the time window for treatment, require further investigation before broad clinical implementation can be realized.
人类疱疹病毒是双链DNA病毒,目前已鉴定出八种类型。疱疹病毒感染包括活跃的裂解期和终身潜伏期,且有重新激活的可能性。这些感染在全球范围内高度流行,可导致广泛的临床表现,从轻微症状到严重疾病,尤其是在免疫功能低下的个体中。基于成簇规律间隔短回文重复序列(CRISPR)的疗法是当前抗病毒药物的一种有趣替代方案,当前抗病毒药物无法治愈潜伏感染,且越来越受到病毒耐药性的挑战。
本综述旨在总结基于CRISPR的抗疱疹病毒感染抗病毒策略的现状,突出其潜在机制、研究设计与结果以及临床应用面临的挑战。
在PubMed和Web of Science数据库中进行文献检索,针对每种疱疹病毒采用通用和单独的检索方法。
本综述确定了基于CRISPR的抗病毒疗法在体外和/或体内对抗疱疹病毒感染的五种主要机制。第一,CRISPR系统在靶向病毒裂解基因或宿主基因时可抑制活跃的裂解复制周期。第二,CRISPR技术可通过靶向维持潜伏期所必需的病毒基因或使病毒基因组不稳定,从感染细胞中去除潜伏的病毒基因组。第三,CRISPR-Cas介导的裂解病毒基因编辑可抑制多种潜伏性疱疹病毒感染的重新激活,预防临床症状的爆发并降低病毒传播风险。第四,CRISPR系统可有意诱导病毒重新激活,以增强宿主免疫系统的识别或提高现有抗病毒疗法的疗效。第五,CRISPR技术可用于开发或提高细胞免疫疗法的效率。
多项研究证明了基于CRISPR的抗病毒策略在体外和体内通过多种机制靶向疱疹病毒感染的潜力。然而,在实现广泛临床应用之前,CRISPR系统的递送和生物安全性以及治疗时间窗等方面需要进一步研究。