Suppr超能文献

选择性清洗提高药物再利用的机器学习准确性:MDM2抑制剂的多尺度发现

Selective Cleaning Enhances Machine Learning Accuracy for Drug Repurposing: Multiscale Discovery of MDM2 Inhibitors.

作者信息

Akmal Mohammad Firdaus, Wong Ming Wah

机构信息

Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

出版信息

Molecules. 2025 Jul 16;30(14):2992. doi: 10.3390/molecules30142992.

Abstract

Cancer remains one of the most formidable challenges to human health; hence, developing effective treatments is critical for saving lives. An important strategy involves reactivating tumor suppressor genes, particularly p53, by targeting their negative regulator MDM2, which is essential in promoting cell cycle arrest and apoptosis. Leveraging a drug repurposing approach, we screened over 24,000 clinically tested molecules to identify new MDM2 inhibitors. A key innovation of this work is the development and application of a selective cleaning algorithm that systematically filters assay data to mitigate noise and inconsistencies inherent in large-scale bioactivity datasets. This approach significantly improved the predictive accuracy of our machine learning model for pIC values, reducing RMSE by 21.6% and achieving state-of-the-art performance (R = 0.87)-a substantial improvement over standard data preprocessing pipelines. The optimized model was integrated with structure-based virtual screening via molecular docking to prioritize repurposing candidate compounds. We identified two clinical CB1 antagonists, MePPEP and otenabant, and the statin drug atorvastatin as promising repurposing candidates based on their high predicted potency and binding affinity toward MDM2. Interactions with the related proteins MDM4 and BCL2 suggest these compounds may enhance p53 restoration through multi-target mechanisms. Quantum mechanical (ONIOM) optimizations and molecular dynamics simulations confirmed the stability and favorable interaction profiles of the selected protein-ligand complexes, resembling that of navtemadlin, a known MDM2 inhibitor. This multiscale, accuracy-boosted workflow introduces a novel data-curation strategy that substantially enhances AI model performance and enables efficient drug repurposing against challenging cancer targets.

摘要

癌症仍然是人类健康面临的最严峻挑战之一;因此,开发有效的治疗方法对于挽救生命至关重要。一项重要策略是通过靶向肿瘤抑制基因的负调节因子MDM2来重新激活肿瘤抑制基因,尤其是p53,MDM2在促进细胞周期停滞和凋亡中至关重要。利用药物重新利用方法,我们筛选了超过24000种经过临床测试的分子,以鉴定新的MDM2抑制剂。这项工作的一个关键创新是开发和应用了一种选择性清理算法,该算法系统地过滤分析数据,以减轻大规模生物活性数据集中固有的噪声和不一致性。这种方法显著提高了我们机器学习模型对pIC值的预测准确性,将均方根误差降低了21.6%,并达到了先进水平(R = 0.87)——比标准数据预处理管道有了实质性改进。优化后的模型通过分子对接与基于结构的虚拟筛选相结合,对重新利用的候选化合物进行优先级排序。基于它们对MDM2的高预测效力和结合亲和力,我们鉴定出两种临床CB1拮抗剂MePPEP和otnabant以及他汀类药物阿托伐他汀作为有前景的重新利用候选药物。与相关蛋白MDM4和BCL2的相互作用表明,这些化合物可能通过多靶点机制增强p53的恢复。量子力学(ONIOM)优化和分子动力学模拟证实了所选蛋白质-配体复合物的稳定性和良好的相互作用特征,类似于已知的MDM2抑制剂navtemadlin。这种多尺度、提高准确性的工作流程引入了一种新颖的数据管理策略,该策略显著提高了人工智能模型的性能,并能够针对具有挑战性的癌症靶点进行高效的药物重新利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验