Suppr超能文献

Chemprop:一个用于化学性质预测的机器学习工具包。

Chemprop: A Machine Learning Package for Chemical Property Prediction.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria.

出版信息

J Chem Inf Model. 2024 Jan 8;64(1):9-17. doi: 10.1021/acs.jcim.3c01250. Epub 2023 Dec 26.

Abstract

Deep learning has become a powerful and frequently employed tool for the prediction of molecular properties, thus creating a need for open-source and versatile software solutions that can be operated by nonexperts. Among the current approaches, directed message-passing neural networks (D-MPNNs) have proven to perform well on a variety of property prediction tasks. The software package Chemprop implements the D-MPNN architecture and offers simple, easy, and fast access to machine-learned molecular properties. Compared to its initial version, we present a multitude of new Chemprop functionalities such as the support of multimolecule properties, reactions, atom/bond-level properties, and spectra. Further, we incorporate various uncertainty quantification and calibration methods along with related metrics as well as pretraining and transfer learning workflows, improved hyperparameter optimization, and other customization options concerning loss functions or atom/bond features. We benchmark D-MPNN models trained using Chemprop with the new reaction, atom-level, and spectra functionality on a variety of property prediction data sets, including MoleculeNet and SAMPL, and observe state-of-the-art performance on the prediction of water-octanol partition coefficients, reaction barrier heights, atomic partial charges, and absorption spectra. Chemprop enables out-of-the-box training of D-MPNN models for a variety of problem settings in fast, user-friendly, and open-source software.

摘要

深度学习已成为预测分子性质的强大且常用的工具,因此需要开源且功能多样的软件解决方案,即使非专业人员也能操作。在当前的方法中,定向消息传递神经网络(D-MPNN)已被证明在各种性质预测任务中表现出色。软件包 Chemprop 实现了 D-MPNN 架构,并提供了对机器学习分子性质的简单、易用和快速访问。与最初的版本相比,我们提供了许多新的 Chemprop 功能,例如支持多分子性质、反应、原子/键级性质和光谱。此外,我们还结合了各种不确定性量化和校准方法以及相关指标,以及预训练和迁移学习工作流程、改进的超参数优化以及关于损失函数或原子/键特征的其他定制选项。我们使用 Chemprop 训练的 D-MPNN 模型在各种性质预测数据集(包括 MoleculeNet 和 SAMPL)上使用新的反应、原子级和光谱功能进行基准测试,并观察到在预测水-辛醇分配系数、反应势垒高度、原子部分电荷和吸收光谱方面的最新性能。Chemprop 能够在快速、用户友好且开源的软件中为各种问题设置提供开箱即用的 D-MPNN 模型训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33f1/10777403/f8e79202c78b/ci3c01250_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验