Suppr超能文献

连续新冠病毒变异株的医院住院时长多尺度建模:多状态预测框架

Multiscale Modeling of Hospital Length of Stay for Successive SARS-CoV-2 Variants: A Multi-State Forecasting Framework.

作者信息

Choi Minchan, Kim Jungeun, Kim Heesung, Tobin Ruarai J, Lee Sunmi

机构信息

Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Republic of Korea.

Department of Mathematics and Computer Science, Korea Science Academy of KAIST, Busan 47162, Republic of Korea.

出版信息

Viruses. 2025 Jul 6;17(7):953. doi: 10.3390/v17070953.

Abstract

Understanding how hospital length of stay (LoS) evolves with successive SARS-CoV-2 variants is central to the multiscale modeling and forecasting of COVID-19 and other respiratory virus dynamics. Using records from 1249 COVID-19 patients admitted to Chungbuk National University Hospital (2021-2023), we quantified LoS across three distinct variant phases (Pre-Delta, Delta, and Omicron) and three age groups (0-39, 40-64, and 65+ years). A gamma-distributed multi-state model-capturing transitions between semi-critical and critical wards-incorporated variant phase and age as log-linear covariates. Parameters were estimated via maximum likelihood with 95% confidence intervals derived from bootstrap resampling, and Monte Carlo iterations yielded detailed LoS distributions. Omicron-phase stays were 5-8 days, shorter than the 10-14 days observed in earlier phases, reflecting improved treatment protocols and reduced virulence. Younger adults typically stayed 3-5 days, whereas older cohorts required 8-12 days, with prolonged admissions (over 30 days) clustering in the oldest group. These time-dependent transition probabilities can be integrated with real-time bed-availability alert systems, highlighting the need for variant-specific ward/ICU resource planning and underscoring the importance of targeted management for elderly patients during current and future pandemics.

摘要

了解住院时间(LoS)如何随新冠病毒(SARS-CoV-2)的后续变种演变,是对新冠疫情及其他呼吸道病毒动态进行多尺度建模和预测的核心。我们利用忠北国立大学医院收治的1249例新冠患者(2021 - 2023年)的记录,对三个不同变种阶段(德尔塔之前、德尔塔和奥密克戎)以及三个年龄组(0 - 39岁、40 - 64岁和65岁以上)的住院时间进行了量化。一个伽马分布的多状态模型——捕捉半重症和重症病房之间的转移情况——将变种阶段和年龄作为对数线性协变量纳入其中。通过最大似然估计参数,并通过自助重采样得出95%置信区间,蒙特卡洛迭代产生了详细的住院时间分布。奥密克戎阶段的住院时间为5 - 8天,短于早期阶段观察到的10 - 14天,这反映了治疗方案的改进和毒力的降低。较年轻的成年人通常住院3 - 5天,而年龄较大的人群则需要8 - 12天,最长住院时间(超过30天)集中在年龄最大的组中。这些随时间变化的转移概率可与实时床位可用性警报系统相结合,突出了针对特定变种的病房/重症监护室资源规划的必要性,并强调了在当前和未来大流行期间对老年患者进行针对性管理的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf0/12299293/1238443280f6/viruses-17-00953-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验